0 CpxTRS
↳1 DecreasingLoopProof (⇔, 292 ms)
↳2 BOUNDS(n^1, INF)
↳3 RenamingProof (⇔, 0 ms)
↳4 CpxRelTRS
↳5 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 typed CpxTrs
↳7 OrderProof (LOWER BOUND(ID), 0 ms)
↳8 typed CpxTrs
↳9 RewriteLemmaProof (LOWER BOUND(ID), 714 ms)
↳10 BEST
↳11 typed CpxTrs
↳12 RewriteLemmaProof (LOWER BOUND(ID), 293 ms)
↳13 BEST
↳14 typed CpxTrs
↳15 RewriteLemmaProof (LOWER BOUND(ID), 172 ms)
↳16 BEST
↳17 typed CpxTrs
↳18 RewriteLemmaProof (LOWER BOUND(ID), 1568 ms)
↳19 BEST
↳20 typed CpxTrs
↳21 LowerBoundsProof (⇔, 0 ms)
↳22 BOUNDS(n^2, INF)
↳23 typed CpxTrs
↳24 LowerBoundsProof (⇔, 0 ms)
↳25 BOUNDS(n^2, INF)
↳26 typed CpxTrs
↳27 LowerBoundsProof (⇔, 0 ms)
↳28 BOUNDS(n^2, INF)
↳29 typed CpxTrs
↳30 LowerBoundsProof (⇔, 0 ms)
↳31 BOUNDS(n^2, INF)
↳32 typed CpxTrs
↳33 LowerBoundsProof (⇔, 0 ms)
↳34 BOUNDS(n^1, INF)
plus(x, 0) → x
plus(x, s(y)) → s(plus(x, y))
times(0, y) → 0
times(x, 0) → 0
times(s(x), y) → plus(times(x, y), y)
p(s(s(x))) → s(p(s(x)))
p(s(0)) → 0
fac(s(x)) → times(fac(p(s(x))), s(x))
plus(x, 0') → x
plus(x, s(y)) → s(plus(x, y))
times(0', y) → 0'
times(x, 0') → 0'
times(s(x), y) → plus(times(x, y), y)
p(s(s(x))) → s(p(s(x)))
p(s(0')) → 0'
fac(s(x)) → times(fac(p(s(x))), s(x))
They will be analysed ascendingly in the following order:
plus < times
times < fac
p < fac
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
plus, times, p, fac
They will be analysed ascendingly in the following order:
plus < times
times < fac
p < fac
Induction Base:
plus(gen_0':s2_0(a), gen_0':s2_0(0)) →RΩ(1)
gen_0':s2_0(a)
Induction Step:
plus(gen_0':s2_0(a), gen_0':s2_0(+(n4_0, 1))) →RΩ(1)
s(plus(gen_0':s2_0(a), gen_0':s2_0(n4_0))) →IH
s(gen_0':s2_0(+(a, c5_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
plus(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
times, p, fac
They will be analysed ascendingly in the following order:
times < fac
p < fac
Induction Base:
times(gen_0':s2_0(0), gen_0':s2_0(b)) →RΩ(1)
0'
Induction Step:
times(gen_0':s2_0(+(n475_0, 1)), gen_0':s2_0(b)) →RΩ(1)
plus(times(gen_0':s2_0(n475_0), gen_0':s2_0(b)), gen_0':s2_0(b)) →IH
plus(gen_0':s2_0(*(c476_0, b)), gen_0':s2_0(b)) →LΩ(1 + b)
gen_0':s2_0(+(b, *(n475_0, b)))
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
Lemmas:
plus(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
times(gen_0':s2_0(n475_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n475_0, b)), rt ∈ Ω(1 + b·n4750 + n4750)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
p, fac
They will be analysed ascendingly in the following order:
p < fac
Induction Base:
p(gen_0':s2_0(+(1, 0))) →RΩ(1)
0'
Induction Step:
p(gen_0':s2_0(+(1, +(n1092_0, 1)))) →RΩ(1)
s(p(s(gen_0':s2_0(n1092_0)))) →IH
s(gen_0':s2_0(c1093_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
plus(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
times(gen_0':s2_0(n475_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n475_0, b)), rt ∈ Ω(1 + b·n4750 + n4750)
p(gen_0':s2_0(+(1, n1092_0))) → gen_0':s2_0(n1092_0), rt ∈ Ω(1 + n10920)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
fac
Induction Base:
fac(gen_0':s2_0(+(1, 0)))
Induction Step:
fac(gen_0':s2_0(+(1, +(n1276_0, 1)))) →RΩ(1)
times(fac(p(s(gen_0':s2_0(+(1, n1276_0))))), s(gen_0':s2_0(+(1, n1276_0)))) →LΩ(2 + n12760)
times(fac(gen_0':s2_0(+(1, n1276_0))), s(gen_0':s2_0(+(1, n1276_0)))) →IH
times(*3_0, s(gen_0':s2_0(+(1, n1276_0))))
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
Lemmas:
plus(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
times(gen_0':s2_0(n475_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n475_0, b)), rt ∈ Ω(1 + b·n4750 + n4750)
p(gen_0':s2_0(+(1, n1092_0))) → gen_0':s2_0(n1092_0), rt ∈ Ω(1 + n10920)
fac(gen_0':s2_0(+(1, n1276_0))) → *3_0, rt ∈ Ω(n12760 + n127602)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
Lemmas:
plus(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
times(gen_0':s2_0(n475_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n475_0, b)), rt ∈ Ω(1 + b·n4750 + n4750)
p(gen_0':s2_0(+(1, n1092_0))) → gen_0':s2_0(n1092_0), rt ∈ Ω(1 + n10920)
fac(gen_0':s2_0(+(1, n1276_0))) → *3_0, rt ∈ Ω(n12760 + n127602)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
Lemmas:
plus(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
times(gen_0':s2_0(n475_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n475_0, b)), rt ∈ Ω(1 + b·n4750 + n4750)
p(gen_0':s2_0(+(1, n1092_0))) → gen_0':s2_0(n1092_0), rt ∈ Ω(1 + n10920)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
Lemmas:
plus(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
times(gen_0':s2_0(n475_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n475_0, b)), rt ∈ Ω(1 + b·n4750 + n4750)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
Lemmas:
plus(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.