(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
plus(x, 0') → x
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
times(0', y) → 0'
times(s(0'), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0', y) → 0'
div(x, y) → quot(x, y, y)
quot(0', s(y), z) → 0'
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0', s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
plus(x, 0') → x
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
times(0', y) → 0'
times(s(0'), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0', y) → 0'
div(x, y) → quot(x, y, y)
quot(0', s(y), z) → 0'
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0', s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
div :: 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
plus,
times,
div,
quotThey will be analysed ascendingly in the following order:
plus < times
times < div
div = quot
(6) Obligation:
TRS:
Rules:
plus(
x,
0') →
xplus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
0'),
y) →
ytimes(
s(
x),
y) →
plus(
y,
times(
x,
y))
div(
0',
y) →
0'div(
x,
y) →
quot(
x,
y,
y)
quot(
0',
s(
y),
z) →
0'quot(
s(
x),
s(
y),
z) →
quot(
x,
y,
z)
quot(
x,
0',
s(
z)) →
s(
div(
x,
s(
z)))
div(
div(
x,
y),
z) →
div(
x,
times(
y,
z))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
div :: 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
plus, times, div, quot
They will be analysed ascendingly in the following order:
plus < times
times < div
div = quot
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
plus(
gen_0':s2_0(
n4_0),
gen_0':s2_0(
b)) →
gen_0':s2_0(
+(
n4_0,
b)), rt ∈ Ω(1 + n4
0)
Induction Base:
plus(gen_0':s2_0(0), gen_0':s2_0(b)) →RΩ(1)
gen_0':s2_0(b)
Induction Step:
plus(gen_0':s2_0(+(n4_0, 1)), gen_0':s2_0(b)) →RΩ(1)
s(plus(gen_0':s2_0(n4_0), gen_0':s2_0(b))) →IH
s(gen_0':s2_0(+(b, c5_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
plus(
x,
0') →
xplus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
0'),
y) →
ytimes(
s(
x),
y) →
plus(
y,
times(
x,
y))
div(
0',
y) →
0'div(
x,
y) →
quot(
x,
y,
y)
quot(
0',
s(
y),
z) →
0'quot(
s(
x),
s(
y),
z) →
quot(
x,
y,
z)
quot(
x,
0',
s(
z)) →
s(
div(
x,
s(
z)))
div(
div(
x,
y),
z) →
div(
x,
times(
y,
z))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
div :: 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s2_0(n4_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
times, div, quot
They will be analysed ascendingly in the following order:
times < div
div = quot
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
times(
gen_0':s2_0(
n577_0),
gen_0':s2_0(
b)) →
gen_0':s2_0(
*(
n577_0,
b)), rt ∈ Ω(1 + b·n577
0 + n577
0)
Induction Base:
times(gen_0':s2_0(0), gen_0':s2_0(b)) →RΩ(1)
0'
Induction Step:
times(gen_0':s2_0(+(n577_0, 1)), gen_0':s2_0(b)) →RΩ(1)
plus(gen_0':s2_0(b), times(gen_0':s2_0(n577_0), gen_0':s2_0(b))) →IH
plus(gen_0':s2_0(b), gen_0':s2_0(*(c578_0, b))) →LΩ(1 + b)
gen_0':s2_0(+(b, *(n577_0, b)))
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
(11) Complex Obligation (BEST)
(12) Obligation:
TRS:
Rules:
plus(
x,
0') →
xplus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
0'),
y) →
ytimes(
s(
x),
y) →
plus(
y,
times(
x,
y))
div(
0',
y) →
0'div(
x,
y) →
quot(
x,
y,
y)
quot(
0',
s(
y),
z) →
0'quot(
s(
x),
s(
y),
z) →
quot(
x,
y,
z)
quot(
x,
0',
s(
z)) →
s(
div(
x,
s(
z)))
div(
div(
x,
y),
z) →
div(
x,
times(
y,
z))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
div :: 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s2_0(n4_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
times(gen_0':s2_0(n577_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n577_0, b)), rt ∈ Ω(1 + b·n5770 + n5770)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
quot, div
They will be analysed ascendingly in the following order:
div = quot
(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
quot(
gen_0':s2_0(
n1370_0),
gen_0':s2_0(
+(
1,
n1370_0)),
gen_0':s2_0(
c)) →
gen_0':s2_0(
0), rt ∈ Ω(1 + n1370
0)
Induction Base:
quot(gen_0':s2_0(0), gen_0':s2_0(+(1, 0)), gen_0':s2_0(c)) →RΩ(1)
0'
Induction Step:
quot(gen_0':s2_0(+(n1370_0, 1)), gen_0':s2_0(+(1, +(n1370_0, 1))), gen_0':s2_0(c)) →RΩ(1)
quot(gen_0':s2_0(n1370_0), gen_0':s2_0(+(1, n1370_0)), gen_0':s2_0(c)) →IH
gen_0':s2_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(14) Complex Obligation (BEST)
(15) Obligation:
TRS:
Rules:
plus(
x,
0') →
xplus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
0'),
y) →
ytimes(
s(
x),
y) →
plus(
y,
times(
x,
y))
div(
0',
y) →
0'div(
x,
y) →
quot(
x,
y,
y)
quot(
0',
s(
y),
z) →
0'quot(
s(
x),
s(
y),
z) →
quot(
x,
y,
z)
quot(
x,
0',
s(
z)) →
s(
div(
x,
s(
z)))
div(
div(
x,
y),
z) →
div(
x,
times(
y,
z))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
div :: 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s2_0(n4_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
times(gen_0':s2_0(n577_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n577_0, b)), rt ∈ Ω(1 + b·n5770 + n5770)
quot(gen_0':s2_0(n1370_0), gen_0':s2_0(+(1, n1370_0)), gen_0':s2_0(c)) → gen_0':s2_0(0), rt ∈ Ω(1 + n13700)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
div
They will be analysed ascendingly in the following order:
div = quot
(16) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol div.
(17) Obligation:
TRS:
Rules:
plus(
x,
0') →
xplus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
0'),
y) →
ytimes(
s(
x),
y) →
plus(
y,
times(
x,
y))
div(
0',
y) →
0'div(
x,
y) →
quot(
x,
y,
y)
quot(
0',
s(
y),
z) →
0'quot(
s(
x),
s(
y),
z) →
quot(
x,
y,
z)
quot(
x,
0',
s(
z)) →
s(
div(
x,
s(
z)))
div(
div(
x,
y),
z) →
div(
x,
times(
y,
z))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
div :: 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s2_0(n4_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
times(gen_0':s2_0(n577_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n577_0, b)), rt ∈ Ω(1 + b·n5770 + n5770)
quot(gen_0':s2_0(n1370_0), gen_0':s2_0(+(1, n1370_0)), gen_0':s2_0(c)) → gen_0':s2_0(0), rt ∈ Ω(1 + n13700)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
times(gen_0':s2_0(n577_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n577_0, b)), rt ∈ Ω(1 + b·n5770 + n5770)
(19) BOUNDS(n^2, INF)
(20) Obligation:
TRS:
Rules:
plus(
x,
0') →
xplus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
0'),
y) →
ytimes(
s(
x),
y) →
plus(
y,
times(
x,
y))
div(
0',
y) →
0'div(
x,
y) →
quot(
x,
y,
y)
quot(
0',
s(
y),
z) →
0'quot(
s(
x),
s(
y),
z) →
quot(
x,
y,
z)
quot(
x,
0',
s(
z)) →
s(
div(
x,
s(
z)))
div(
div(
x,
y),
z) →
div(
x,
times(
y,
z))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
div :: 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s2_0(n4_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
times(gen_0':s2_0(n577_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n577_0, b)), rt ∈ Ω(1 + b·n5770 + n5770)
quot(gen_0':s2_0(n1370_0), gen_0':s2_0(+(1, n1370_0)), gen_0':s2_0(c)) → gen_0':s2_0(0), rt ∈ Ω(1 + n13700)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
times(gen_0':s2_0(n577_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n577_0, b)), rt ∈ Ω(1 + b·n5770 + n5770)
(22) BOUNDS(n^2, INF)
(23) Obligation:
TRS:
Rules:
plus(
x,
0') →
xplus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
0'),
y) →
ytimes(
s(
x),
y) →
plus(
y,
times(
x,
y))
div(
0',
y) →
0'div(
x,
y) →
quot(
x,
y,
y)
quot(
0',
s(
y),
z) →
0'quot(
s(
x),
s(
y),
z) →
quot(
x,
y,
z)
quot(
x,
0',
s(
z)) →
s(
div(
x,
s(
z)))
div(
div(
x,
y),
z) →
div(
x,
times(
y,
z))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
div :: 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s2_0(n4_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
times(gen_0':s2_0(n577_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n577_0, b)), rt ∈ Ω(1 + b·n5770 + n5770)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(24) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
times(gen_0':s2_0(n577_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n577_0, b)), rt ∈ Ω(1 + b·n5770 + n5770)
(25) BOUNDS(n^2, INF)
(26) Obligation:
TRS:
Rules:
plus(
x,
0') →
xplus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
0'),
y) →
ytimes(
s(
x),
y) →
plus(
y,
times(
x,
y))
div(
0',
y) →
0'div(
x,
y) →
quot(
x,
y,
y)
quot(
0',
s(
y),
z) →
0'quot(
s(
x),
s(
y),
z) →
quot(
x,
y,
z)
quot(
x,
0',
s(
z)) →
s(
div(
x,
s(
z)))
div(
div(
x,
y),
z) →
div(
x,
times(
y,
z))
Types:
plus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
times :: 0':s → 0':s → 0':s
div :: 0':s → 0':s → 0':s
quot :: 0':s → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
plus(gen_0':s2_0(n4_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(27) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
plus(gen_0':s2_0(n4_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
(28) BOUNDS(n^1, INF)