(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(0, 1, x) → f(s(x), x, x)
f(x, y, s(z)) → s(f(0, 1, z))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(0, 1, s(z8_2)) →+ s(f(0, 1, z8_2))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [z8_2 / s(z8_2)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(0', 1', x) → f(s(x), x, x)
f(x, y, s(z)) → s(f(0', 1', z))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
f(0', 1', x) → f(s(x), x, x)
f(x, y, s(z)) → s(f(0', 1', z))
Types:
f :: 0':1':s → 0':1':s → 0':1':s → 0':1':s
0' :: 0':1':s
1' :: 0':1':s
s :: 0':1':s → 0':1':s
hole_0':1':s1_0 :: 0':1':s
gen_0':1':s2_0 :: Nat → 0':1':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f
(8) Obligation:
TRS:
Rules:
f(
0',
1',
x) →
f(
s(
x),
x,
x)
f(
x,
y,
s(
z)) →
s(
f(
0',
1',
z))
Types:
f :: 0':1':s → 0':1':s → 0':1':s → 0':1':s
0' :: 0':1':s
1' :: 0':1':s
s :: 0':1':s → 0':1':s
hole_0':1':s1_0 :: 0':1':s
gen_0':1':s2_0 :: Nat → 0':1':s
Generator Equations:
gen_0':1':s2_0(0) ⇔ 1'
gen_0':1':s2_0(+(x, 1)) ⇔ s(gen_0':1':s2_0(x))
The following defined symbols remain to be analysed:
f
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(10) Obligation:
TRS:
Rules:
f(
0',
1',
x) →
f(
s(
x),
x,
x)
f(
x,
y,
s(
z)) →
s(
f(
0',
1',
z))
Types:
f :: 0':1':s → 0':1':s → 0':1':s → 0':1':s
0' :: 0':1':s
1' :: 0':1':s
s :: 0':1':s → 0':1':s
hole_0':1':s1_0 :: 0':1':s
gen_0':1':s2_0 :: Nat → 0':1':s
Generator Equations:
gen_0':1':s2_0(0) ⇔ 1'
gen_0':1':s2_0(+(x, 1)) ⇔ s(gen_0':1':s2_0(x))
No more defined symbols left to analyse.