*** 1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: if_mod(false(),s(x),s(y)) -> s(x) if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) mod(0(),y) -> 0() mod(s(x),0()) -> 0() mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) Weak DP Rules: Weak TRS Rules: Signature: {if_mod/3,le/2,minus/2,mod/2} / {0/0,false/0,s/1,true/0} Obligation: Full basic terms: {if_mod,le,minus,mod}/{0,false,s,true} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(if_mod) = {1}, uargs(mod) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [0] p(false) = [0] p(if_mod) = [1] x1 + [1] x2 + [1] x3 + [0] p(le) = [11] p(minus) = [1] x1 + [1] p(mod) = [1] x1 + [1] x2 + [1] p(s) = [1] x1 + [8] p(true) = [0] Following rules are strictly oriented: if_mod(false(),s(x),s(y)) = [1] x + [1] y + [16] > [1] x + [8] = s(x) if_mod(true(),s(x),s(y)) = [1] x + [1] y + [16] > [1] x + [1] y + [10] = mod(minus(x,y),s(y)) le(0(),y) = [11] > [0] = true() le(s(x),0()) = [11] > [0] = false() minus(x,0()) = [1] x + [1] > [1] x + [0] = x minus(s(x),s(y)) = [1] x + [9] > [1] x + [1] = minus(x,y) mod(0(),y) = [1] y + [1] > [0] = 0() mod(s(x),0()) = [1] x + [9] > [0] = 0() Following rules are (at-least) weakly oriented: le(s(x),s(y)) = [11] >= [11] = le(x,y) mod(s(x),s(y)) = [1] x + [1] y + [17] >= [1] x + [1] y + [27] = if_mod(le(y,x),s(x),s(y)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: le(s(x),s(y)) -> le(x,y) mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) Weak DP Rules: Weak TRS Rules: if_mod(false(),s(x),s(y)) -> s(x) if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) le(0(),y) -> true() le(s(x),0()) -> false() minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) mod(0(),y) -> 0() mod(s(x),0()) -> 0() Signature: {if_mod/3,le/2,minus/2,mod/2} / {0/0,false/0,s/1,true/0} Obligation: Full basic terms: {if_mod,le,minus,mod}/{0,false,s,true} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(if_mod) = {1}, uargs(mod) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [4] p(false) = [0] p(if_mod) = [1] x1 + [1] x2 + [0] p(le) = [0] p(minus) = [1] x1 + [1] p(mod) = [1] x1 + [2] p(s) = [1] x1 + [4] p(true) = [0] Following rules are strictly oriented: mod(s(x),s(y)) = [1] x + [6] > [1] x + [4] = if_mod(le(y,x),s(x),s(y)) Following rules are (at-least) weakly oriented: if_mod(false(),s(x),s(y)) = [1] x + [4] >= [1] x + [4] = s(x) if_mod(true(),s(x),s(y)) = [1] x + [4] >= [1] x + [3] = mod(minus(x,y),s(y)) le(0(),y) = [0] >= [0] = true() le(s(x),0()) = [0] >= [0] = false() le(s(x),s(y)) = [0] >= [0] = le(x,y) minus(x,0()) = [1] x + [1] >= [1] x + [0] = x minus(s(x),s(y)) = [1] x + [5] >= [1] x + [1] = minus(x,y) mod(0(),y) = [6] >= [4] = 0() mod(s(x),0()) = [1] x + [6] >= [4] = 0() Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: le(s(x),s(y)) -> le(x,y) Weak DP Rules: Weak TRS Rules: if_mod(false(),s(x),s(y)) -> s(x) if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) le(0(),y) -> true() le(s(x),0()) -> false() minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) mod(0(),y) -> 0() mod(s(x),0()) -> 0() mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) Signature: {if_mod/3,le/2,minus/2,mod/2} / {0/0,false/0,s/1,true/0} Obligation: Full basic terms: {if_mod,le,minus,mod}/{0,false,s,true} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(if_mod) = {1}, uargs(mod) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = 0 p(false) = 0 p(if_mod) = 1 + x1 + 7*x2 + 7*x2*x3 p(le) = x1 p(minus) = x1 p(mod) = 7*x1 + 7*x1*x2 + x2 p(s) = 1 + x1 p(true) = 0 Following rules are strictly oriented: le(s(x),s(y)) = 1 + x > x = le(x,y) Following rules are (at-least) weakly oriented: if_mod(false(),s(x),s(y)) = 15 + 14*x + 7*x*y + 7*y >= 1 + x = s(x) if_mod(true(),s(x),s(y)) = 15 + 14*x + 7*x*y + 7*y >= 1 + 14*x + 7*x*y + y = mod(minus(x,y),s(y)) le(0(),y) = 0 >= 0 = true() le(s(x),0()) = 1 + x >= 0 = false() minus(x,0()) = x >= x = x minus(s(x),s(y)) = 1 + x >= x = minus(x,y) mod(0(),y) = y >= 0 = 0() mod(s(x),0()) = 7 + 7*x >= 0 = 0() mod(s(x),s(y)) = 15 + 14*x + 7*x*y + 8*y >= 15 + 14*x + 7*x*y + 8*y = if_mod(le(y,x),s(x),s(y)) *** 1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: if_mod(false(),s(x),s(y)) -> s(x) if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) mod(0(),y) -> 0() mod(s(x),0()) -> 0() mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) Signature: {if_mod/3,le/2,minus/2,mod/2} / {0/0,false/0,s/1,true/0} Obligation: Full basic terms: {if_mod,le,minus,mod}/{0,false,s,true} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).