0 CpxTRS
↳1 RenamingProof (⇔, 0 ms)
↳2 CpxRelTRS
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 typed CpxTrs
↳5 OrderProof (LOWER BOUND(ID), 0 ms)
↳6 typed CpxTrs
↳7 RewriteLemmaProof (LOWER BOUND(ID), 350 ms)
↳8 BEST
↳9 typed CpxTrs
↳10 NoRewriteLemmaProof (LOWER BOUND(ID), 0 ms)
↳11 typed CpxTrs
↳12 LowerBoundsProof (⇔, 0 ms)
↳13 BOUNDS(n^1, INF)
↳14 typed CpxTrs
↳15 LowerBoundsProof (⇔, 0 ms)
↳16 BOUNDS(n^1, INF)
g(s(x)) → f(x)
f(0) → s(0)
f(s(x)) → s(s(g(x)))
g(0) → 0
g(s(x)) → f(x)
f(0') → s(0')
f(s(x)) → s(s(g(x)))
g(0') → 0'
They will be analysed ascendingly in the following order:
g = f
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
The following defined symbols remain to be analysed:
f, g
They will be analysed ascendingly in the following order:
g = f
Induction Base:
f(gen_s:0'2_0(*(2, 0))) →RΩ(1)
s(0')
Induction Step:
f(gen_s:0'2_0(*(2, +(n4_0, 1)))) →RΩ(1)
s(s(g(gen_s:0'2_0(+(1, *(2, n4_0)))))) →RΩ(1)
s(s(f(gen_s:0'2_0(*(2, n4_0))))) →IH
s(s(gen_s:0'2_0(+(1, *(2, c5_0)))))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
f(gen_s:0'2_0(*(2, n4_0))) → gen_s:0'2_0(+(1, *(2, n4_0))), rt ∈ Ω(1 + n40)
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
The following defined symbols remain to be analysed:
g
They will be analysed ascendingly in the following order:
g = f
Lemmas:
f(gen_s:0'2_0(*(2, n4_0))) → gen_s:0'2_0(+(1, *(2, n4_0))), rt ∈ Ω(1 + n40)
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
No more defined symbols left to analyse.
Lemmas:
f(gen_s:0'2_0(*(2, n4_0))) → gen_s:0'2_0(+(1, *(2, n4_0))), rt ∈ Ω(1 + n40)
Generator Equations:
gen_s:0'2_0(0) ⇔ 0'
gen_s:0'2_0(+(x, 1)) ⇔ s(gen_s:0'2_0(x))
No more defined symbols left to analyse.