*** 1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
p(f(f(x))) -> q(f(g(x)))
p(g(g(x))) -> q(g(f(x)))
q(f(f(x))) -> p(f(g(x)))
q(g(g(x))) -> p(g(f(x)))
Weak DP Rules:
Weak TRS Rules:
Signature:
{p/1,q/1} / {f/1,g/1}
Obligation:
Full
basic terms: {p,q}/{f,g}
Applied Processor:
ToInnermost
Proof:
switch to innermost, as the system is overlay and right linear and does not contain weak rules
*** 1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
p(f(f(x))) -> q(f(g(x)))
p(g(g(x))) -> q(g(f(x)))
q(f(f(x))) -> p(f(g(x)))
q(g(g(x))) -> p(g(f(x)))
Weak DP Rules:
Weak TRS Rules:
Signature:
{p/1,q/1} / {f/1,g/1}
Obligation:
Innermost
basic terms: {p,q}/{f,g}
Applied Processor:
DependencyPairs {dpKind_ = DT}
Proof:
We add the following dependency tuples:
Strict DPs
p#(f(f(x))) -> c_1(q#(f(g(x))))
p#(g(g(x))) -> c_2(q#(g(f(x))))
q#(f(f(x))) -> c_3(p#(f(g(x))))
q#(g(g(x))) -> c_4(p#(g(f(x))))
Weak DPs
and mark the set of starting terms.
*** 1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
p#(f(f(x))) -> c_1(q#(f(g(x))))
p#(g(g(x))) -> c_2(q#(g(f(x))))
q#(f(f(x))) -> c_3(p#(f(g(x))))
q#(g(g(x))) -> c_4(p#(g(f(x))))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
p(f(f(x))) -> q(f(g(x)))
p(g(g(x))) -> q(g(f(x)))
q(f(f(x))) -> p(f(g(x)))
q(g(g(x))) -> p(g(f(x)))
Signature:
{p/1,q/1,p#/1,q#/1} / {f/1,g/1,c_1/1,c_2/1,c_3/1,c_4/1}
Obligation:
Innermost
basic terms: {p#,q#}/{f,g}
Applied Processor:
UsableRules
Proof:
We replace rewrite rules by usable rules:
p#(f(f(x))) -> c_1(q#(f(g(x))))
p#(g(g(x))) -> c_2(q#(g(f(x))))
q#(f(f(x))) -> c_3(p#(f(g(x))))
q#(g(g(x))) -> c_4(p#(g(f(x))))
*** 1.1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
p#(f(f(x))) -> c_1(q#(f(g(x))))
p#(g(g(x))) -> c_2(q#(g(f(x))))
q#(f(f(x))) -> c_3(p#(f(g(x))))
q#(g(g(x))) -> c_4(p#(g(f(x))))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{p/1,q/1,p#/1,q#/1} / {f/1,g/1,c_1/1,c_2/1,c_3/1,c_4/1}
Obligation:
Innermost
basic terms: {p#,q#}/{f,g}
Applied Processor:
Trivial
Proof:
Consider the dependency graph
1:S:p#(f(f(x))) -> c_1(q#(f(g(x))))
2:S:p#(g(g(x))) -> c_2(q#(g(f(x))))
3:S:q#(f(f(x))) -> c_3(p#(f(g(x))))
4:S:q#(g(g(x))) -> c_4(p#(g(f(x))))
The dependency graph contains no loops, we remove all dependency pairs.
*** 1.1.1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{p/1,q/1,p#/1,q#/1} / {f/1,g/1,c_1/1,c_2/1,c_3/1,c_4/1}
Obligation:
Innermost
basic terms: {p#,q#}/{f,g}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).