*** 1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: p(f(f(x))) -> q(f(g(x))) p(g(g(x))) -> q(g(f(x))) q(f(f(x))) -> p(f(g(x))) q(g(g(x))) -> p(g(f(x))) Weak DP Rules: Weak TRS Rules: Signature: {p/1,q/1} / {f/1,g/1} Obligation: Full basic terms: {p,q}/{f,g} Applied Processor: ToInnermost Proof: switch to innermost, as the system is overlay and right linear and does not contain weak rules *** 1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: p(f(f(x))) -> q(f(g(x))) p(g(g(x))) -> q(g(f(x))) q(f(f(x))) -> p(f(g(x))) q(g(g(x))) -> p(g(f(x))) Weak DP Rules: Weak TRS Rules: Signature: {p/1,q/1} / {f/1,g/1} Obligation: Innermost basic terms: {p,q}/{f,g} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs p#(f(f(x))) -> c_1(q#(f(g(x)))) p#(g(g(x))) -> c_2(q#(g(f(x)))) q#(f(f(x))) -> c_3(p#(f(g(x)))) q#(g(g(x))) -> c_4(p#(g(f(x)))) Weak DPs and mark the set of starting terms. *** 1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: p#(f(f(x))) -> c_1(q#(f(g(x)))) p#(g(g(x))) -> c_2(q#(g(f(x)))) q#(f(f(x))) -> c_3(p#(f(g(x)))) q#(g(g(x))) -> c_4(p#(g(f(x)))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: p(f(f(x))) -> q(f(g(x))) p(g(g(x))) -> q(g(f(x))) q(f(f(x))) -> p(f(g(x))) q(g(g(x))) -> p(g(f(x))) Signature: {p/1,q/1,p#/1,q#/1} / {f/1,g/1,c_1/1,c_2/1,c_3/1,c_4/1} Obligation: Innermost basic terms: {p#,q#}/{f,g} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: p#(f(f(x))) -> c_1(q#(f(g(x)))) p#(g(g(x))) -> c_2(q#(g(f(x)))) q#(f(f(x))) -> c_3(p#(f(g(x)))) q#(g(g(x))) -> c_4(p#(g(f(x)))) *** 1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: p#(f(f(x))) -> c_1(q#(f(g(x)))) p#(g(g(x))) -> c_2(q#(g(f(x)))) q#(f(f(x))) -> c_3(p#(f(g(x)))) q#(g(g(x))) -> c_4(p#(g(f(x)))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {p/1,q/1,p#/1,q#/1} / {f/1,g/1,c_1/1,c_2/1,c_3/1,c_4/1} Obligation: Innermost basic terms: {p#,q#}/{f,g} Applied Processor: Trivial Proof: Consider the dependency graph 1:S:p#(f(f(x))) -> c_1(q#(f(g(x)))) 2:S:p#(g(g(x))) -> c_2(q#(g(f(x)))) 3:S:q#(f(f(x))) -> c_3(p#(f(g(x)))) 4:S:q#(g(g(x))) -> c_4(p#(g(f(x)))) The dependency graph contains no loops, we remove all dependency pairs. *** 1.1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {p/1,q/1,p#/1,q#/1} / {f/1,g/1,c_1/1,c_2/1,c_3/1,c_4/1} Obligation: Innermost basic terms: {p#,q#}/{f,g} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).