Trying to load file: main.koat Initial Control flow graph problem: Start location: evalrandom1dstart 0: evalrandom1dstart -> evalrandom1dentryin : [], cost: 1 1: evalrandom1dentryin -> evalrandom1dbb5in : B'=1, [ A>=1 ], cost: 1 2: evalrandom1dentryin -> evalrandom1dreturnin : [ 0>=A ], cost: 1 4: evalrandom1dbb5in -> evalrandom1dreturnin : [ B>=1+A ], cost: 1 3: evalrandom1dbb5in -> evalrandom1dbb1in : [ A>=B ], cost: 1 8: evalrandom1dreturnin -> evalrandom1dstop : [], cost: 1 5: evalrandom1dbb1in -> evalrandom1dbb5in : B'=1+B, [ 0>=1+free ], cost: 1 6: evalrandom1dbb1in -> evalrandom1dbb5in : B'=1+B, [ free_1>=1 ], cost: 1 7: evalrandom1dbb1in -> evalrandom1dbb5in : B'=1+B, [], cost: 1 Removing duplicate transition: 5. Removing duplicate transition: 6. Simplified the transitions: Start location: evalrandom1dstart 0: evalrandom1dstart -> evalrandom1dentryin : [], cost: 1 1: evalrandom1dentryin -> evalrandom1dbb5in : B'=1, [ A>=1 ], cost: 1 3: evalrandom1dbb5in -> evalrandom1dbb1in : [ A>=B ], cost: 1 7: evalrandom1dbb1in -> evalrandom1dbb5in : B'=1+B, [], cost: 1 Applied simple chaining: Start location: evalrandom1dstart 0: evalrandom1dstart -> evalrandom1dbb5in : B'=1, [ A>=1 ], cost: 2 3: evalrandom1dbb5in -> evalrandom1dbb5in : B'=1+B, [ A>=B ], cost: 2 Eliminating 1 self-loops for location evalrandom1dbb5in Self-Loop 3 has the metering function: 1-B+A, resulting in the new transition 9. Removing the self-loops: 3. Removed all Self-loops using metering functions (where possible): Start location: evalrandom1dstart 0: evalrandom1dstart -> evalrandom1dbb5in : B'=1, [ A>=1 ], cost: 2 9: evalrandom1dbb5in -> [6] : B'=1+A, [ A>=B ], cost: 2-2*B+2*A Applied simple chaining: Start location: evalrandom1dstart 0: evalrandom1dstart -> [6] : B'=1+A, [ A>=1 && A>=1 ], cost: 2+2*A Final control flow graph problem, now checking costs for infinitely many models: Start location: evalrandom1dstart 0: evalrandom1dstart -> [6] : B'=1+A, [ A>=1 && A>=1 ], cost: 2+2*A Computing complexity for remaining 1 transitions. Found configuration with infinitely models for cost: 2+2*A and guard: A>=1 && A>=1: A: Pos Found new complexity n^1, because: Found infinity configuration. The final runtime is determined by this resulting transition: Final Guard: A>=1 && A>=1 Final Cost: 2+2*A Obtained the following complexity w.r.t. the length of the input n: Complexity class: n^1 Complexity value: 1 WORST_CASE(Omega(n^1),?)