Trying to load file: main.koat Initial Control flow graph problem: Start location: f0 0: f0 -> f3 : A'=0, [], cost: 1 1: f3 -> f3 : A'=1+free, [ A==5 ], cost: 1 2: f3 -> f3 : A'=1+A, B'=A, [ 9>=A && 4>=A ], cost: 1 3: f3 -> f3 : A'=1+A, B'=A, [ 9>=A && A>=6 ], cost: 1 4: f3 -> f12 : [ A>=10 ], cost: 1 Simplified the transitions: Start location: f0 0: f0 -> f3 : A'=0, [], cost: 1 1: f3 -> f3 : A'=1+free, [ A==5 ], cost: 1 2: f3 -> f3 : A'=1+A, B'=A, [ 4>=A ], cost: 1 3: f3 -> f3 : A'=1+A, B'=A, [ 9>=A && A>=6 ], cost: 1 Eliminating 3 self-loops for location f3 Self-Loop 2 has the metering function: 5-A, resulting in the new transition 6. Self-Loop 3 has the metering function: 10-A, resulting in the new transition 7. Found unbounded runtime when nesting loops, and nested parallel self-loops 5 (outer loop) and 6 (inner loop), obtaining the new transitions: 8, 9. Found this metering function when nesting loops: meter, and nested parallel self-loops 5 (outer loop) and 7 (inner loop), obtaining the new transitions: 10. Found this metering function when nesting loops: 5-A, Found this metering function when nesting loops: -4+A, Found unbounded runtime when nesting loops, Found this metering function when nesting loops: meter_1, and nested parallel self-loops 2 (outer loop) and 10 (inner loop), obtaining the new transitions: 11. Found this metering function when nesting loops: meter_2, and nested parallel self-loops 2 (outer loop) and 11 (inner loop), obtaining the new transitions: 12. Removing the self-loops: 1 2 3 5. Adding an epsilon transition (to model nonexecution of the loops): 13. Removed all Self-loops using metering functions (where possible): Start location: f0 0: f0 -> f3 : A'=0, [], cost: 1 6: f3 -> [3] : A'=5, B'=4, [ 4>=A ], cost: 5-A 7: f3 -> [3] : A'=10, B'=9, [ 9>=A && A>=6 ], cost: 10-A 8: f3 -> [3] : [ A==5 && 4>=1+free ], cost: INF 9: f3 -> [3] : A'=5, B'=4, [ 4>=A && 5==5 && 4>=1+free ], cost: INF 10: f3 -> [3] : A'=10, B'=9, [ A==5 && 9>=1+free && 1+free>=6 && 5*meter==5-A ], cost: -free*meter+10*meter 11: f3 -> [3] : A'=10, B'=9, [ 4>=A && 1+A==5 && 9>=1+free && 1+free>=6 && 5*meter==4-A && 6*meter_1==4-A ], cost: 10*meter_1*meter+meter_1-meter_1*free*meter 12: f3 -> [3] : A'=10, B'=9, [ 4>=A && 4>=1+A && 2+A==5 && 9>=1+free && 1+free>=6 && 5*meter==3-A && 6*meter_1==3-A && 7*meter_2==3-A ], cost: meter_2*meter_1+10*meter_2*meter_1*meter+meter_2-meter_2*meter_1*free*meter 13: f3 -> [3] : [], cost: 0 Applied chaining over branches and pruning: Start location: f0 15: f0 -> [3] : A'=5, B'=4, [ 4>=0 && 5==5 && 4>=1+free ], cost: INF Final control flow graph problem, now checking costs for infinitely many models: Start location: f0 15: f0 -> [3] : A'=5, B'=4, [ 4>=0 && 5==5 && 4>=1+free ], cost: INF Computing complexity for remaining 1 transitions. Found new complexity INF, because: INF sat. The final runtime is determined by this resulting transition: Final Guard: 4>=0 && 5==5 && 4>=1+free Final Cost: INF Obtained the following complexity w.r.t. the length of the input n: Complexity class: INF Complexity value: INF WORST_CASE(INF,?)