Trying to load file: main.koat Initial Control flow graph problem: Start location: f22 0: f17 -> f17 : B'=free, D'=1+D, E'=free_1, [ A>=1+B && C>=0 && D>=0 ], cost: 1 1: f17 -> f17 : B'=free_2, D'=1+D, E'=free_3, [ B>=1+A && C>=0 && D>=0 ], cost: 1 4: f17 -> f20 : A'=B, G'=free_8, [ C>=0 && D>=0 && B==A ], cost: 1 2: f18 -> f17 : B'=free_4, D'=1, E'=free_5, [ F>=0 && A>=1+B ], cost: 1 3: f18 -> f17 : B'=free_6, D'=1, E'=free_7, [ F>=0 && B>=1+A ], cost: 1 5: f22 -> f18 : B'=H, G'=free_9, Q'=2, J'=free_10, K'=free_10, L'=free_10, M'=free_10, N'=3, O'=0, [ A>=1+H && F>=0 ], cost: 1 6: f22 -> f18 : B'=H, G'=free_11, Q'=2, J'=free_12, K'=free_12, L'=free_12, M'=free_12, N'=3, O'=0, [ H>=1+A && F>=0 ], cost: 1 Simplified the transitions: Start location: f22 0: f17 -> f17 : B'=free, D'=1+D, E'=free_1, [ A>=1+B && C>=0 && D>=0 ], cost: 1 1: f17 -> f17 : B'=free_2, D'=1+D, E'=free_3, [ B>=1+A && C>=0 && D>=0 ], cost: 1 2: f18 -> f17 : B'=free_4, D'=1, E'=free_5, [ F>=0 && A>=1+B ], cost: 1 3: f18 -> f17 : B'=free_6, D'=1, E'=free_7, [ F>=0 && B>=1+A ], cost: 1 5: f22 -> f18 : B'=H, G'=free_9, Q'=2, J'=free_10, K'=free_10, L'=free_10, M'=free_10, N'=3, O'=0, [ A>=1+H && F>=0 ], cost: 1 6: f22 -> f18 : B'=H, G'=free_11, Q'=2, J'=free_12, K'=free_12, L'=free_12, M'=free_12, N'=3, O'=0, [ H>=1+A && F>=0 ], cost: 1 Eliminating 2 self-loops for location f17 Removing the self-loops: 0 1. Adding an epsilon transition (to model nonexecution of the loops): 9. Removed all Self-loops using metering functions (where possible): Start location: f22 7: f17 -> [4] : B'=free, D'=1+D, E'=free_1, [ A>=1+B && C>=0 && D>=0 ], cost: 1 8: f17 -> [4] : B'=free_2, D'=1+D, E'=free_3, [ B>=1+A && C>=0 && D>=0 ], cost: 1 9: f17 -> [4] : [], cost: 0 2: f18 -> f17 : B'=free_4, D'=1, E'=free_5, [ F>=0 && A>=1+B ], cost: 1 3: f18 -> f17 : B'=free_6, D'=1, E'=free_7, [ F>=0 && B>=1+A ], cost: 1 5: f22 -> f18 : B'=H, G'=free_9, Q'=2, J'=free_10, K'=free_10, L'=free_10, M'=free_10, N'=3, O'=0, [ A>=1+H && F>=0 ], cost: 1 6: f22 -> f18 : B'=H, G'=free_11, Q'=2, J'=free_12, K'=free_12, L'=free_12, M'=free_12, N'=3, O'=0, [ H>=1+A && F>=0 ], cost: 1 Applied chaining over branches and pruning: Start location: f22 Final control flow graph problem, now checking costs for infinitely many models: Start location: f22 Computing complexity for remaining 0 transitions. The final runtime is determined by this resulting transition: Final Guard: Final Cost: 1 Obtained the following complexity w.r.t. the length of the input n: Complexity class: const Complexity value: 0 WORST_CASE(Omega(1),?)