Trying to load file: main.koat Initial Control flow graph problem: Start location: f1 0: f0 -> f0 : A'=-A, B'=B+A, C'=C+A, [ 0>=1+A ], cost: 1 1: f0 -> f0 : A'=B+A, B'=-B, D'=B+D, [ 0>=1+B ], cost: 1 2: f0 -> f0 : B'=B+D, D'=-D, E'=E+D, [ 0>=1+D ], cost: 1 3: f0 -> f0 : C'=E+C, D'=E+D, E'=-E, [ 0>=1+E ], cost: 1 4: f0 -> f0 : A'=C+A, C'=-C, E'=E+C, [ 0>=1+C ], cost: 1 5: f1 -> f0 : A'=free_4, B'=free_1, C'=free, D'=free_2, E'=free_3, F'=free_2+free+free_3+free_1+free_4, [ free_2+free+free_3+free_1+free_4>=1 ], cost: 1 Eliminating 5 self-loops for location f0 Removing the self-loops: 0 1 2 3 4. Adding an epsilon transition (to model nonexecution of the loops): 11. Removed all Self-loops using metering functions (where possible): Start location: f1 6: f0 -> [2] : A'=-A, B'=B+A, C'=C+A, [ 0>=1+A ], cost: 1 7: f0 -> [2] : A'=B+A, B'=-B, D'=B+D, [ 0>=1+B ], cost: 1 8: f0 -> [2] : B'=B+D, D'=-D, E'=E+D, [ 0>=1+D ], cost: 1 9: f0 -> [2] : C'=E+C, D'=E+D, E'=-E, [ 0>=1+E ], cost: 1 10: f0 -> [2] : A'=C+A, C'=-C, E'=E+C, [ 0>=1+C ], cost: 1 11: f0 -> [2] : [], cost: 0 5: f1 -> f0 : A'=free_4, B'=free_1, C'=free, D'=free_2, E'=free_3, F'=free_2+free+free_3+free_1+free_4, [ free_2+free+free_3+free_1+free_4>=1 ], cost: 1 Applied chaining over branches and pruning: Start location: f1 Final control flow graph problem, now checking costs for infinitely many models: Start location: f1 Computing complexity for remaining 0 transitions. The final runtime is determined by this resulting transition: Final Guard: Final Cost: 1 Obtained the following complexity w.r.t. the length of the input n: Complexity class: const Complexity value: 0 WORST_CASE(Omega(1),?)