Trying to load file: main.koat Initial Control flow graph problem: Start location: f0 0: f0 -> f1 : [], cost: 1 1: f1 -> f1 : B'=1+B, [ A>=1+B ], cost: 1 2: f1 -> f2 : C'=B, [ B>=A ], cost: 1 3: f2 -> f2 : C'=-1+C, [ C>=1 ], cost: 1 4: f2 -> f3 : D'=C, [ 0>=C ], cost: 1 5: f3 -> f3 : D'=1+D, [ A>=1+D ], cost: 1 6: f3 -> f4 : E'=D, [ D>=A ], cost: 1 7: f4 -> f4 : E'=-1+E, [ E>=1 ], cost: 1 Eliminating 1 self-loops for location f1 Self-Loop 1 has the metering function: -B+A, resulting in the new transition 8. Removing the self-loops: 1. Eliminating 1 self-loops for location f2 Self-Loop 3 has the metering function: C, resulting in the new transition 9. Removing the self-loops: 3. Eliminating 1 self-loops for location f3 Self-Loop 5 has the metering function: -D+A, resulting in the new transition 10. Removing the self-loops: 5. Eliminating 1 self-loops for location f4 Self-Loop 7 has the metering function: E, resulting in the new transition 11. Removing the self-loops: 7. Removed all Self-loops using metering functions (where possible): Start location: f0 0: f0 -> f1 : [], cost: 1 8: f1 -> [5] : B'=A, [ A>=1+B ], cost: -B+A 9: f2 -> [6] : C'=0, [ C>=1 ], cost: C 10: f3 -> [7] : D'=A, [ A>=1+D ], cost: -D+A 11: f4 -> [8] : E'=0, [ E>=1 ], cost: E 2: [5] -> f2 : C'=B, [ B>=A ], cost: 1 4: [6] -> f3 : D'=C, [ 0>=C ], cost: 1 6: [7] -> f4 : E'=D, [ D>=A ], cost: 1 Applied simple chaining: Start location: f0 0: f0 -> [8] : B'=A, C'=0, D'=A, E'=0, [ A>=1+B && A>=A && A>=1 && 0>=0 && A>=1 && A>=A && A>=1 ], cost: 4-B+4*A Final control flow graph problem, now checking costs for infinitely many models: Start location: f0 0: f0 -> [8] : B'=A, C'=0, D'=A, E'=0, [ A>=1+B && A>=A && A>=1 && 0>=0 && A>=1 && A>=A && A>=1 ], cost: 4-B+4*A Computing complexity for remaining 1 transitions. Found configuration with infinitely models for cost: 4-B+4*A and guard: A>=1+B && A>=A && A>=1 && 0>=0 && A>=1 && A>=A && A>=1: B: Pos, A: Pos, where: A > B Found new complexity n^1, because: Found infinity configuration. The final runtime is determined by this resulting transition: Final Guard: A>=1+B && A>=A && A>=1 && 0>=0 && A>=1 && A>=A && A>=1 Final Cost: 4-B+4*A Obtained the following complexity w.r.t. the length of the input n: Complexity class: n^1 Complexity value: 1 WORST_CASE(Omega(n^1),?)