Trying to load file: main.koat Initial Control flow graph problem: Start location: f3 0: f3 -> f1 : A'=0, [], cost: 1 3: f1 -> f1 : A'=0, B'=1+B, C'=-1+C, [ C>=1+B && 0>=A && C>=2+B ], cost: 1 1: f1 -> f2 : D'=free, [ B>=C ], cost: 1 2: f1 -> f2 : A'=1, B'=1+B, D'=free_1, [ 0>=A && 1+B==C ], cost: 1 Simplified the transitions: Start location: f3 0: f3 -> f1 : A'=0, [], cost: 1 3: f1 -> f1 : A'=0, B'=1+B, C'=-1+C, [ 0>=A && C>=2+B ], cost: 1 Eliminating 1 self-loops for location f1 Self-Loop 3 has the metering function: meter, resulting in the new transition 4. Removing the self-loops: 3. Removed all Self-loops using metering functions (where possible): Start location: f3 0: f3 -> f1 : A'=0, [], cost: 1 4: f1 -> [3] : A'=0, B'=meter+B, C'=-meter+C, [ 0>=A && C>=2+B && 2*meter==-1-B+C ], cost: meter Applied simple chaining: Start location: f3 0: f3 -> [3] : A'=0, B'=meter+B, C'=-meter+C, [ 0>=0 && C>=2+B && 2*meter==-1-B+C ], cost: 1+meter Final control flow graph problem, now checking costs for infinitely many models: Start location: f3 0: f3 -> [3] : A'=0, B'=meter+B, C'=-meter+C, [ 0>=0 && C>=2+B && 2*meter==-1-B+C ], cost: 1+meter Computing complexity for remaining 1 transitions. Found configuration with infinitely models for cost: 1+meter and guard: 0>=0 && C>=2+B && 2*meter==-1-B+C: meter: Pos, B: Both, C: Both Found new complexity n^1, because: Found infinity configuration. The final runtime is determined by this resulting transition: Final Guard: 0>=0 && C>=2+B && 2*meter==-1-B+C Final Cost: 1+meter Obtained the following complexity w.r.t. the length of the input n: Complexity class: n^1 Complexity value: 1 WORST_CASE(Omega(n^1),?)