Trying to load file: main.koat Initial Control flow graph problem: Start location: f3 0: f2 -> f2 : A'=-1+A, B'=-1+B, C'=A, D'=B, E'=-2+A, [ A>=1 && B>=1 ], cost: 1 2: f2 -> f4 : B'=free_1, F'=free, [ 0>=B && 0>=free_1 ], cost: 1 3: f2 -> f4 : F'=free_2, [ B>=1 && 0>=A ], cost: 1 1: f3 -> f2 : [], cost: 1 Simplified the transitions: Start location: f3 0: f2 -> f2 : A'=-1+A, B'=-1+B, C'=A, D'=B, E'=-2+A, [ A>=1 && B>=1 ], cost: 1 1: f3 -> f2 : [], cost: 1 Eliminating 1 self-loops for location f2 Self-Loop 4 has the metering function: B, resulting in the new transition 7. Self-Loop 5 has the metering function: A, resulting in the new transition 8. Removing the self-loops: 0 4 5. Adding an epsilon transition (to model nonexecution of the loops): 9. Removed all Self-loops using metering functions (where possible): Start location: f3 6: f2 -> [3] : A'=-1+A, B'=-1+B, C'=A, D'=B, E'=-2+A, [ A>=1 && B>=1 ], cost: 1 7: f2 -> [3] : A'=-B+A, B'=0, C'=1-B+A, D'=1, E'=-1-B+A, [ A>=1 && B>=1 && A>B ], cost: B 8: f2 -> [3] : A'=0, B'=B-A, C'=1, D'=1+B-A, E'=-1, [ A>=1 && B>=1 && B>A ], cost: A 9: f2 -> [3] : [], cost: 0 1: f3 -> f2 : [], cost: 1 Applied chaining over branches and pruning: Start location: f3 11: f3 -> [3] : A'=-B+A, B'=0, C'=1-B+A, D'=1, E'=-1-B+A, [ A>=1 && B>=1 && A>B ], cost: 1+B 12: f3 -> [3] : A'=0, B'=B-A, C'=1, D'=1+B-A, E'=-1, [ A>=1 && B>=1 && B>A ], cost: 1+A Final control flow graph problem, now checking costs for infinitely many models: Start location: f3 11: f3 -> [3] : A'=-B+A, B'=0, C'=1-B+A, D'=1, E'=-1-B+A, [ A>=1 && B>=1 && A>B ], cost: 1+B 12: f3 -> [3] : A'=0, B'=B-A, C'=1, D'=1+B-A, E'=-1, [ A>=1 && B>=1 && B>A ], cost: 1+A Computing complexity for remaining 2 transitions. Found configuration with infinitely models for cost: 1+B and guard: A>=1 && B>=1 && A>B: B: Pos, A: Pos, where: A > B Found new complexity n^1, because: Found infinity configuration. The final runtime is determined by this resulting transition: Final Guard: A>=1 && B>=1 && A>B Final Cost: 1+B Obtained the following complexity w.r.t. the length of the input n: Complexity class: n^1 Complexity value: 1 WORST_CASE(Omega(n^1),?)