Trying to load file: main.koat Initial Control flow graph problem: Start location: f300 0: f300 -> f1 : A'=free_2, B'=free_4, C'=free, D'=free_1, E'=free_3, [], cost: 1 1: f1 -> f1 : H'=256, Q'=free_8, J'=free_10, K'=free_5, L'=free_7, M'=free_9, N'=free_6, [ G>=1+F && free_11>=1 && H==256 ], cost: 1 2: f1 -> f1 : Q'=free_14, J'=free_16, K'=free_12, L'=free_13, M'=free_15, [ G>=1+F && 0>=H ], cost: 1 3: f1 -> f3 : Q'=free_17, J'=free_18, O'=0, P'=0, Q_1'=0, [ F>=G ], cost: 1 4: f1 -> f2 : Q'=free_23, J'=free_25, K'=free_20, L'=free_22, M'=free_24, N'=free_21, O'=H, P'=H, Q_1'=H, R'=free_19, [ H>=1 && G>=1+F && H>=257 ], cost: 1 5: f1 -> f2 : Q'=free_30, J'=free_32, K'=free_27, L'=free_29, M'=free_31, N'=free_28, O'=H, P'=H, Q_1'=H, R'=free_26, [ H>=1 && G>=1+F && 255>=H ], cost: 1 Simplified the transitions: Start location: f300 0: f300 -> f1 : A'=free_2, B'=free_4, C'=free, D'=free_1, E'=free_3, [], cost: 1 1: f1 -> f1 : H'=256, Q'=free_8, J'=free_10, K'=free_5, L'=free_7, M'=free_9, N'=free_6, [ G>=1+F && H==256 ], cost: 1 2: f1 -> f1 : Q'=free_14, J'=free_16, K'=free_12, L'=free_13, M'=free_15, [ G>=1+F && 0>=H ], cost: 1 Eliminating 2 self-loops for location f1 Self-Loop 1 has unbounded runtime, resulting in the new transition 6. Self-Loop 2 has unbounded runtime, resulting in the new transition 7. Removing the self-loops: 1 2. Removed all Self-loops using metering functions (where possible): Start location: f300 0: f300 -> f1 : A'=free_2, B'=free_4, C'=free, D'=free_1, E'=free_3, [], cost: 1 6: f1 -> [4] : [ G>=1+F && H==256 ], cost: INF 7: f1 -> [4] : [ G>=1+F && 0>=H ], cost: INF Applied chaining over branches and pruning: Start location: f300 8: f300 -> [4] : A'=free_2, B'=free_4, C'=free, D'=free_1, E'=free_3, [ G>=1+F && H==256 ], cost: INF 9: f300 -> [4] : A'=free_2, B'=free_4, C'=free, D'=free_1, E'=free_3, [ G>=1+F && 0>=H ], cost: INF Final control flow graph problem, now checking costs for infinitely many models: Start location: f300 8: f300 -> [4] : A'=free_2, B'=free_4, C'=free, D'=free_1, E'=free_3, [ G>=1+F && H==256 ], cost: INF 9: f300 -> [4] : A'=free_2, B'=free_4, C'=free, D'=free_1, E'=free_3, [ G>=1+F && 0>=H ], cost: INF Computing complexity for remaining 2 transitions. Found new complexity INF, because: INF sat. The final runtime is determined by this resulting transition: Final Guard: G>=1+F && H==256 Final Cost: INF Obtained the following complexity w.r.t. the length of the input n: Complexity class: INF Complexity value: INF WORST_CASE(INF,?)