Trying to load file: main.koat Initial Control flow graph problem: Start location: f3 0: f2 -> f2 : A'=-1+free, [ 0>=free_1 && 0>=1+A ], cost: 1 1: f2 -> f2 : A'=1+free_2, [ free_3>=2 && 0>=1+A ], cost: 1 2: f2 -> f2 : A'=-1+free_4, [ 0>=2+free_5 && A>=1 ], cost: 1 3: f2 -> f2 : A'=1+free_6, [ free_7>=0 && A>=1 ], cost: 1 5: f2 -> f300 : A'=0, B'=free_8, [ 0>=1+A ], cost: 1 6: f2 -> f300 : A'=0, B'=free_9, [ A>=1 ], cost: 1 7: f2 -> f300 : B'=free_10, [ A==0 ], cost: 1 4: f3 -> f2 : [], cost: 1 Simplified the transitions: Start location: f3 0: f2 -> f2 : A'=-1+free, [ 0>=1+A ], cost: 1 1: f2 -> f2 : A'=1+free_2, [ 0>=1+A ], cost: 1 2: f2 -> f2 : A'=-1+free_4, [ A>=1 ], cost: 1 3: f2 -> f2 : A'=1+free_6, [ A>=1 ], cost: 1 4: f3 -> f2 : [], cost: 1 Eliminating 4 self-loops for location f2 Removing the self-loops: 0 1 2 3. Adding an epsilon transition (to model nonexecution of the loops): 12. Removed all Self-loops using metering functions (where possible): Start location: f3 8: f2 -> [3] : A'=-1+free, [ 0>=1+A ], cost: 1 9: f2 -> [3] : A'=1+free_2, [ 0>=1+A ], cost: 1 10: f2 -> [3] : A'=-1+free_4, [ A>=1 ], cost: 1 11: f2 -> [3] : A'=1+free_6, [ A>=1 ], cost: 1 12: f2 -> [3] : [], cost: 0 4: f3 -> f2 : [], cost: 1 Applied chaining over branches and pruning: Start location: f3 Final control flow graph problem, now checking costs for infinitely many models: Start location: f3 Computing complexity for remaining 0 transitions. The final runtime is determined by this resulting transition: Final Guard: Final Cost: 1 Obtained the following complexity w.r.t. the length of the input n: Complexity class: const Complexity value: 0 WORST_CASE(Omega(1),?)