Trying to load file: main.koat Initial Control flow graph problem: Start location: f3 0: f0 -> f0 : A'=-1+A, B'=C, C'=-1+C, D'=A, [ A>=1 ], cost: 1 2: f0 -> f0 : A'=5000, [ 0>=A && C>=1 ], cost: 1 1: f1 -> f0 : A'=-1+A, C'=-1+C, E'=C, F'=A, [ A>=1 && C>=1 ], cost: 1 3: f3 -> f0 : A'=5000, C'=free, [ free>=1 ], cost: 1 Simplified the transitions: Start location: f3 0: f0 -> f0 : A'=-1+A, B'=C, C'=-1+C, D'=A, [ A>=1 ], cost: 1 2: f0 -> f0 : A'=5000, [ 0>=A && C>=1 ], cost: 1 3: f3 -> f0 : A'=5000, C'=free, [ free>=1 ], cost: 1 Eliminating 2 self-loops for location f0 Self-Loop 0 has the metering function: A, resulting in the new transition 4. Found this metering function when nesting loops: meter, Found this metering function when nesting loops: meter_1, and nested parallel self-loops 5 (outer loop) and 4 (inner loop), obtaining the new transitions: 6, 7. Removing the self-loops: 0 2 5. Adding an epsilon transition (to model nonexecution of the loops): 8. Removed all Self-loops using metering functions (where possible): Start location: f3 4: f0 -> [3] : A'=0, B'=1+C-A, C'=C-A, D'=1, [ A>=1 ], cost: A 6: f0 -> [3] : A'=0, B'=1+C-5000*meter_1, C'=C-5000*meter_1, D'=1, [ 0>=A && C>=1 && 5000>=1 && 5000*meter_1==C ], cost: 5001*meter_1 7: f0 -> [3] : A'=0, B'=1+C-5000*meter_1-A, C'=C-5000*meter_1-A, D'=1, [ A>=1 && 0>=0 && C-A>=1 && 5000>=1 && 5000*meter_1==C-A ], cost: 5001*meter_1+A 8: f0 -> [3] : [], cost: 0 3: f3 -> f0 : A'=5000, C'=free, [ free>=1 ], cost: 1 Applied chaining over branches and pruning: Start location: f3 10: f3 -> [3] : A'=0, B'=-4999+free-5000*meter_1, C'=-5000+free-5000*meter_1, D'=1, [ free>=1 && 5000>=1 && 0>=0 && -5000+free>=1 && 5000>=1 && 5000*meter_1==-5000+free ], cost: 5001+5001*meter_1 Final control flow graph problem, now checking costs for infinitely many models: Start location: f3 10: f3 -> [3] : A'=0, B'=-4999+free-5000*meter_1, C'=-5000+free-5000*meter_1, D'=1, [ free>=1 && 5000>=1 && 0>=0 && -5000+free>=1 && 5000>=1 && 5000*meter_1==-5000+free ], cost: 5001+5001*meter_1 Computing complexity for remaining 1 transitions. Found configuration with infinitely models for cost: 5001+5001*meter_1 and guard: free>=1 && 5000>=1 && 0>=0 && -5000+free>=1 && 5000>=1 && 5000*meter_1==-5000+free: free: Both, meter_1: Pos Found new complexity INF, because: Found infinity configuration. The final runtime is determined by this resulting transition: Final Guard: free>=1 && 5000>=1 && 0>=0 && -5000+free>=1 && 5000>=1 && 5000*meter_1==-5000+free Final Cost: 5001+5001*meter_1 Obtained the following complexity w.r.t. the length of the input n: Complexity class: INF Complexity value: INF WORST_CASE(INF,?)