Trying to load file: main.koat Initial Control flow graph problem: Start location: f0 0: f10 -> f16 : B'=0, C'=free, D'=free, [ 0>=A ], cost: 1 5: f10 -> f25 : [ A>=1 ], cost: 1 4: f16 -> f10 : A'=free_1, E'=0, F'=free_1, [ 0>=D ], cost: 1 1: f16 -> f16 : [ D>=1 ], cost: 1 2: f25 -> f25 : [], cost: 1 3: f27 -> f30 : [], cost: 1 6: f0 -> f10 : A'=free_2, B'=0, E'=0, F'=free_2, [], cost: 1 Simplified the transitions: Start location: f0 0: f10 -> f16 : B'=0, C'=free, D'=free, [ 0>=A ], cost: 1 5: f10 -> f25 : [ A>=1 ], cost: 1 4: f16 -> f10 : A'=free_1, E'=0, F'=free_1, [ 0>=D ], cost: 1 1: f16 -> f16 : [ D>=1 ], cost: 1 2: f25 -> f25 : [], cost: 1 6: f0 -> f10 : A'=free_2, B'=0, E'=0, F'=free_2, [], cost: 1 Eliminating 1 self-loops for location f16 Self-Loop 1 has unbounded runtime, resulting in the new transition 7. Removing the self-loops: 1. Eliminating 1 self-loops for location f25 Self-Loop 2 has unbounded runtime, resulting in the new transition 8. Removing the self-loops: 2. Removed all Self-loops using metering functions (where possible): Start location: f0 0: f10 -> f16 : B'=0, C'=free, D'=free, [ 0>=A ], cost: 1 5: f10 -> f25 : [ A>=1 ], cost: 1 7: f16 -> [6] : [ D>=1 ], cost: INF 8: f25 -> [7] : [], cost: INF 6: f0 -> f10 : A'=free_2, B'=0, E'=0, F'=free_2, [], cost: 1 4: [6] -> f10 : A'=free_1, E'=0, F'=free_1, [ 0>=D ], cost: 1 Applied simple chaining: Start location: f0 0: f10 -> [6] : B'=0, C'=free, D'=free, [ 0>=A && free>=1 ], cost: INF 5: f10 -> [7] : [ A>=1 ], cost: INF 6: f0 -> f10 : A'=free_2, B'=0, E'=0, F'=free_2, [], cost: 1 4: [6] -> f10 : A'=free_1, E'=0, F'=free_1, [ 0>=D ], cost: 1 Applied chaining over branches and pruning: Start location: f0 5: f10 -> [7] : [ A>=1 ], cost: INF 9: f10 -> [8] : B'=0, C'=free, D'=free, [ 0>=A && free>=1 ], cost: INF 6: f0 -> f10 : A'=free_2, B'=0, E'=0, F'=free_2, [], cost: 1 Applied chaining over branches and pruning: Start location: f0 10: f0 -> [7] : A'=free_2, B'=0, E'=0, F'=free_2, [ free_2>=1 ], cost: INF 11: f0 -> [8] : A'=free_2, B'=0, C'=free, D'=free, E'=0, F'=free_2, [ 0>=free_2 && free>=1 ], cost: INF Final control flow graph problem, now checking costs for infinitely many models: Start location: f0 10: f0 -> [7] : A'=free_2, B'=0, E'=0, F'=free_2, [ free_2>=1 ], cost: INF 11: f0 -> [8] : A'=free_2, B'=0, C'=free, D'=free, E'=0, F'=free_2, [ 0>=free_2 && free>=1 ], cost: INF Computing complexity for remaining 2 transitions. Found new complexity INF, because: INF sat. The final runtime is determined by this resulting transition: Final Guard: free_2>=1 Final Cost: INF Obtained the following complexity w.r.t. the length of the input n: Complexity class: INF Complexity value: INF WORST_CASE(INF,?)