Trying to load file: main.koat Initial Control flow graph problem: Start location: f1 1: f0 -> f0 : A'=free_2, D'=free_3, E'=0, [ B>=1+A ], cost: 1 2: f0 -> f0 : A'=free_5, D'=free_6, E'=free_7, F'=free_4, [ 0>=1+free_7 && B>=1+A ], cost: 1 3: f0 -> f0 : A'=free_9, D'=free_10, E'=free_11, F'=free_8, [ free_11>=1 && B>=1+A ], cost: 1 0: f0 -> f2 : A'=free, C'=free_1, [ A>=B ], cost: 1 4: f1 -> f0 : G'=free_12, [], cost: 1 Simplified the transitions: Start location: f1 1: f0 -> f0 : A'=free_2, D'=free_3, E'=0, [ B>=1+A ], cost: 1 2: f0 -> f0 : A'=free_5, D'=free_6, E'=free_7, F'=free_4, [ 0>=1+free_7 && B>=1+A ], cost: 1 3: f0 -> f0 : A'=free_9, D'=free_10, E'=free_11, F'=free_8, [ free_11>=1 && B>=1+A ], cost: 1 4: f1 -> f0 : G'=free_12, [], cost: 1 Eliminating 3 self-loops for location f0 Removing the self-loops: 1 2 3. Adding an epsilon transition (to model nonexecution of the loops): 8. Removed all Self-loops using metering functions (where possible): Start location: f1 5: f0 -> [3] : A'=free_2, D'=free_3, E'=0, [ B>=1+A ], cost: 1 6: f0 -> [3] : A'=free_5, D'=free_6, E'=free_7, F'=free_4, [ 0>=1+free_7 && B>=1+A ], cost: 1 7: f0 -> [3] : A'=free_9, D'=free_10, E'=free_11, F'=free_8, [ free_11>=1 && B>=1+A ], cost: 1 8: f0 -> [3] : [], cost: 0 4: f1 -> f0 : G'=free_12, [], cost: 1 Applied chaining over branches and pruning: Start location: f1 Final control flow graph problem, now checking costs for infinitely many models: Start location: f1 Computing complexity for remaining 0 transitions. The final runtime is determined by this resulting transition: Final Guard: Final Cost: 1 Obtained the following complexity w.r.t. the length of the input n: Complexity class: const Complexity value: 0 WORST_CASE(Omega(1),?)