Trying to load file: main.koat Initial Control flow graph problem: Start location: f1 0: f2 -> f2 : A'=1+A, [ B>=1+A ], cost: 1 1: f2 -> f2 : A'=1+A, [ A>=1+B && A>=B ], cost: 1 2: f2 -> f300 : C'=free, [ A==B ], cost: 1 3: f1 -> f2 : [], cost: 1 Simplified the transitions: Start location: f1 0: f2 -> f2 : A'=1+A, [ B>=1+A ], cost: 1 1: f2 -> f2 : A'=1+A, [ A>=1+B ], cost: 1 3: f1 -> f2 : [], cost: 1 Eliminating 2 self-loops for location f2 Self-Loop 0 has the metering function: B-A, resulting in the new transition 4. Self-Loop 1 has unbounded runtime, resulting in the new transition 5. Removing the self-loops: 0 1. Removed all Self-loops using metering functions (where possible): Start location: f1 4: f2 -> [3] : A'=B, [ B>=1+A ], cost: B-A 5: f2 -> [3] : [ A>=1+B ], cost: INF 3: f1 -> f2 : [], cost: 1 Applied chaining over branches and pruning: Start location: f1 6: f1 -> [3] : A'=B, [ B>=1+A ], cost: 1+B-A 7: f1 -> [3] : [ A>=1+B ], cost: INF Final control flow graph problem, now checking costs for infinitely many models: Start location: f1 6: f1 -> [3] : A'=B, [ B>=1+A ], cost: 1+B-A 7: f1 -> [3] : [ A>=1+B ], cost: INF Computing complexity for remaining 2 transitions. Found configuration with infinitely models for cost: 1+B-A and guard: B>=1+A: B: Pos, A: Pos, where: B > A Found new complexity n^1, because: Found infinity configuration. Found new complexity INF, because: INF sat. The final runtime is determined by this resulting transition: Final Guard: A>=1+B Final Cost: INF Obtained the following complexity w.r.t. the length of the input n: Complexity class: INF Complexity value: INF WORST_CASE(INF,?)