Trying to load file: main.koat Initial Control flow graph problem: Start location: f300 1: f2 -> f2 : A'=free_2, [ free_2>=0 && A==14 ], cost: 1 4: f2 -> f2 : A'=-1+A, [ A>=15 && A>=1 ], cost: 1 5: f2 -> f2 : A'=-1+A, [ 13>=A && A>=1 ], cost: 1 0: f2 -> f1 : A'=free, B'=free_1, [ 0>=1+free && A==14 ], cost: 1 2: f2 -> f1 : A'=-1+A, B'=free_3, [ A>=15 && 0>=A ], cost: 1 3: f2 -> f1 : A'=-1+A, B'=free_4, [ 13>=A && 0>=A ], cost: 1 6: f300 -> f2 : [], cost: 1 Simplified the transitions: Start location: f300 1: f2 -> f2 : A'=free_2, [ free_2>=0 && A==14 ], cost: 1 4: f2 -> f2 : A'=-1+A, [ A>=15 ], cost: 1 5: f2 -> f2 : A'=-1+A, [ 13>=A && A>=1 ], cost: 1 6: f300 -> f2 : [], cost: 1 Eliminating 3 self-loops for location f2 Self-Loop 1 has the metering function: meter, resulting in the new transition 7. Self-Loop 4 has the metering function: -14+A, resulting in the new transition 8. Self-Loop 5 has the metering function: A, resulting in the new transition 9. Found unbounded runtime when nesting loops, and nested parallel self-loops 1 (outer loop) and 8 (inner loop), obtaining the new transitions: 10, 11. Found this metering function when nesting loops: meter_1, and nested parallel self-loops 1 (outer loop) and 9 (inner loop), obtaining the new transitions: 12. Found this metering function when nesting loops: 15-A, Found this metering function when nesting loops: -14+A, Found unbounded runtime when nesting loops, Removing the self-loops: 1 4 5. Removed all Self-loops using metering functions (where possible): Start location: f300 7: f2 -> [3] : A'=0, [ 0>=0 && A==14 && 14*meter==-13+A ], cost: meter 8: f2 -> [3] : A'=14, [ A>=15 ], cost: -14+A 9: f2 -> [3] : A'=0, [ 13>=A && A>=1 ], cost: A 10: f2 -> [3] : [ free_2>=0 && A==14 && free_2>=15 ], cost: INF 11: f2 -> [3] : A'=14, [ A>=15 && free_2>=0 && 14==14 && free_2>=15 ], cost: INF 12: f2 -> [3] : A'=0, [ free_2>=0 && A==14 && 13>=free_2 && free_2>=1 && 14*meter_1==-13+A ], cost: meter_1*free_2+meter_1 6: f300 -> f2 : [], cost: 1 Applied chaining over branches and pruning: Start location: f300 13: f300 -> [3] : A'=14, [ A>=15 ], cost: -13+A 14: f300 -> [3] : A'=0, [ 13>=A && A>=1 ], cost: 1+A 15: f300 -> [3] : [ free_2>=0 && A==14 && free_2>=15 ], cost: INF 16: f300 -> [3] : A'=14, [ A>=15 && free_2>=0 && 14==14 && free_2>=15 ], cost: INF Final control flow graph problem, now checking costs for infinitely many models: Start location: f300 13: f300 -> [3] : A'=14, [ A>=15 ], cost: -13+A 14: f300 -> [3] : A'=0, [ 13>=A && A>=1 ], cost: 1+A 15: f300 -> [3] : [ free_2>=0 && A==14 && free_2>=15 ], cost: INF 16: f300 -> [3] : A'=14, [ A>=15 && free_2>=0 && 14==14 && free_2>=15 ], cost: INF Computing complexity for remaining 4 transitions. Found configuration with infinitely models for cost: -13+A and guard: A>=15: A: Pos Found new complexity n^1, because: Found infinity configuration. Found new complexity INF, because: INF sat. The final runtime is determined by this resulting transition: Final Guard: free_2>=0 && A==14 && free_2>=15 Final Cost: INF Obtained the following complexity w.r.t. the length of the input n: Complexity class: INF Complexity value: INF WORST_CASE(INF,?)