Trying to load file: main.koat Initial Control flow graph problem: Start location: f0 0: f0 -> f6 : A'=1, B'=C, [], cost: 1 1: f6 -> f6 : B'=free, D'=free, [ B>=2+A && free^2>=1+C ], cost: 1 2: f6 -> f6 : A'=free_1, D'=free_1, [ B>=2+A && C>=free_1^2 ], cost: 1 3: f6 -> f16 : [ 1+A>=B ], cost: 1 Simplified the transitions: Start location: f0 0: f0 -> f6 : A'=1, B'=C, [], cost: 1 1: f6 -> f6 : B'=free, D'=free, [ B>=2+A && free^2>=1+C ], cost: 1 2: f6 -> f6 : A'=free_1, D'=free_1, [ B>=2+A && C>=free_1^2 ], cost: 1 Eliminating 2 self-loops for location f6 Removing the self-loops: 1 2. Adding an epsilon transition (to model nonexecution of the loops): 6. Removed all Self-loops using metering functions (where possible): Start location: f0 0: f0 -> f6 : A'=1, B'=C, [], cost: 1 4: f6 -> [3] : B'=free, D'=free, [ B>=2+A && free^2>=1+C ], cost: 1 5: f6 -> [3] : A'=free_1, D'=free_1, [ B>=2+A && C>=free_1^2 ], cost: 1 6: f6 -> [3] : [], cost: 0 Applied chaining over branches and pruning: Start location: f0 Final control flow graph problem, now checking costs for infinitely many models: Start location: f0 Computing complexity for remaining 0 transitions. The final runtime is determined by this resulting transition: Final Guard: Final Cost: 1 Obtained the following complexity w.r.t. the length of the input n: Complexity class: const Complexity value: 0 WORST_CASE(Omega(1),?)