Trying to load file: main.koat Initial Control flow graph problem: Start location: f6 0: f9 -> f9 : B'=1+B, C'=1+C, D'=free, [ A>=1+B && C>=0 ], cost: 1 4: f9 -> f5 : E'=1, F'=-3+C+free_24, G'=free_22, H'=0, Q'=free_20, J'=free_18, L'=free_22, M'=free_21, N'=free_19, O'=free_23, Q_1'=D, R'=-2+C, [ C>=2 && B>=A && free_25>=free_26 ], cost: 1 2: f5 -> f5 : E'=1+E, F'=-1+F, G'=M, H'=0, Q'=free_10, J'=free_7, L'=M, M'=N, N'=free_8, O'=free_9, P'=E, [ free_12>=free_11 && E>=0 && F>=0 && H==0 ], cost: 1 1: f5 -> f0 : G'=free_3, H'=G, Q'=free_2, J'=free_4, K'=free_1, [ free_5>=1+free_6 && E>=1 && F>=0 ], cost: 1 3: f5 -> f12 : H'=0, Q'=free_13, J'=free_15, L'=M, N'=0, P'=E, Q_1'=free_14, [ free_16>=free_17 && E>=0 && F>=0 && N==0 && H==0 ], cost: 1 5: f6 -> f9 : A'=17, B'=1, C'=0, D'=free_28, L'=free_27, [], cost: 1 Simplified the transitions: Start location: f6 0: f9 -> f9 : B'=1+B, C'=1+C, D'=free, [ A>=1+B && C>=0 ], cost: 1 4: f9 -> f5 : E'=1, F'=-3+C+free_24, G'=free_22, H'=0, Q'=free_20, J'=free_18, L'=free_22, M'=free_21, N'=free_19, O'=free_23, Q_1'=D, R'=-2+C, [ C>=2 && B>=A ], cost: 1 2: f5 -> f5 : E'=1+E, F'=-1+F, G'=M, H'=0, Q'=free_10, J'=free_7, L'=M, M'=N, N'=free_8, O'=free_9, P'=E, [ E>=0 && F>=0 && H==0 ], cost: 1 5: f6 -> f9 : A'=17, B'=1, C'=0, D'=free_28, L'=free_27, [], cost: 1 Eliminating 1 self-loops for location f9 Self-Loop 0 has the metering function: -B+A, resulting in the new transition 6. Removing the self-loops: 0. Eliminating 1 self-loops for location f5 Self-Loop 2 has the metering function: 1+F, resulting in the new transition 7. Removing the self-loops: 2. Removed all Self-loops using metering functions (where possible): Start location: f6 6: f9 -> [5] : B'=A, C'=-B+C+A, D'=free, [ A>=1+B && C>=0 ], cost: -B+A 7: f5 -> [6] : E'=1+E+F, F'=-1, G'=free_8, H'=0, Q'=free_10, J'=free_7, L'=free_8, M'=free_8, N'=free_8, O'=free_9, P'=E+F, [ E>=0 && F>=0 && H==0 ], cost: 1+F 5: f6 -> f9 : A'=17, B'=1, C'=0, D'=free_28, L'=free_27, [], cost: 1 4: [5] -> f5 : E'=1, F'=-3+C+free_24, G'=free_22, H'=0, Q'=free_20, J'=free_18, L'=free_22, M'=free_21, N'=free_19, O'=free_23, Q_1'=D, R'=-2+C, [ C>=2 && B>=A ], cost: 1 Applied simple chaining: Start location: f6 5: f6 -> [6] : A'=17, B'=17, C'=16, D'=free, E'=15+free_24, F'=-1, G'=free_8, H'=0, Q'=free_10, J'=free_7, L'=free_8, M'=free_8, N'=free_8, O'=free_9, P'=14+free_24, Q_1'=free, R'=14, [ 17>=2 && 0>=0 && 16>=2 && 17>=17 && 1>=0 && 13+free_24>=0 && 0==0 ], cost: 32+free_24 Final control flow graph problem, now checking costs for infinitely many models: Start location: f6 5: f6 -> [6] : A'=17, B'=17, C'=16, D'=free, E'=15+free_24, F'=-1, G'=free_8, H'=0, Q'=free_10, J'=free_7, L'=free_8, M'=free_8, N'=free_8, O'=free_9, P'=14+free_24, Q_1'=free, R'=14, [ 17>=2 && 0>=0 && 16>=2 && 17>=17 && 1>=0 && 13+free_24>=0 && 0==0 ], cost: 32+free_24 Computing complexity for remaining 1 transitions. Found configuration with infinitely models for cost: 32+free_24 and guard: 17>=2 && 0>=0 && 16>=2 && 17>=17 && 1>=0 && 13+free_24>=0 && 0==0: free_24: Pos Found new complexity INF, because: Found infinity configuration. The final runtime is determined by this resulting transition: Final Guard: 17>=2 && 0>=0 && 16>=2 && 17>=17 && 1>=0 && 13+free_24>=0 && 0==0 Final Cost: 32+free_24 Obtained the following complexity w.r.t. the length of the input n: Complexity class: INF Complexity value: INF WORST_CASE(INF,?)