Trying to load file: main.koat Initial Control flow graph problem: Start location: f2 0: f44 -> f73 : [ A>=2+B ], cost: 1 1: f44 -> f73 : [ B>=A ], cost: 1 28: f44 -> f41 : A'=-2+A, B'=-1+A, D'=Q_1+D, J'=free_24, R'=2*O-2*D, S'=4*O^2-8*O*D+4*D^2+P, T'=free_25, U'=free_24, V'=free_24, B1'=Q_1+2*O-D, [ 8*O*D>=1+4*O^2+4*D^2+P && 1+B==A ], cost: 1 23: f44 -> f61 : B'=-1+A, D'=Q_1+D, J'=2*O-2*D, R'=2*O-2*D, S'=4*O^2-8*O*D+4*D^2+P, T'=free_19, U'=free_20, V'=free_18+2*O-2*D, W'=free_18, X'=free_18, Y'=Q_1+free_18+2*O-D, [ 4*O^2+4*D^2+P>=8*O*D && 2*O>=2*D && 1+B==A ], cost: 1 24: f44 -> f61 : B'=-1+A, D'=Q_1+D, J'=2*O-2*D, R'=2*O-2*D, S'=4*O^2-8*O*D+4*D^2+P, T'=free_22, U'=free_23, V'=-free_21+2*O-2*D, X'=-free_21, Y'=Q_1-free_21+2*O-D, Z'=free_21, [ 4*O^2+4*D^2+P>=8*O*D && 2*D>=1+2*O && 1+B==A ], cost: 1 2: f73 -> f75 : [ 29>=C ], cost: 1 3: f73 -> f75 : [ C>=31 ], cost: 1 29: f73 -> f75 : C'=30, [ C==30 ], cost: 1 4: f75 -> f77 : [ 9>=C ], cost: 1 5: f75 -> f77 : [ C>=11 ], cost: 1 31: f75 -> f80 : C'=10, Q_1'=Q_1+D, [ C==10 ], cost: 1 30: f77 -> f80 : C'=20, Q_1'=Q_1+D, [ C==20 ], cost: 1 33: f77 -> f93 : C'=1+C, [ 19>=C ], cost: 1 34: f77 -> f93 : C'=1+C, [ C>=21 ], cost: 1 6: f144 -> f148 : D'=0, [ D==0 ], cost: 1 48: f144 -> f148 : R'=free_94, S'=free_95, D1'=free_93, [ D1>=D*free_99 && D*free_99+free_99>=1+D1 && free_99>=free_93 && D1>=free_96*D && free_96+free_96*D>=1+D1 && free_93>=free_96 && S>=free_97*D && free_97+free_97*D>=1+S && free_97>=free_95 && S>=free_98*D && free_98*D+free_98>=1+S && free_95>=free_98 && 0>=1+D && R>=free_100*D && free_100+free_100*D>=1+R && free_100>=free_94 && R>=free_101*D && free_101+free_101*D>=1+R && free_94>=free_101 ], cost: 1 49: f144 -> f148 : R'=free_103, S'=free_104, D1'=free_102, [ D1>=free_108*D && free_108*D+free_108>=1+D1 && free_108>=free_102 && D1>=free_105*D && free_105*D+free_105>=1+D1 && free_102>=free_105 && S>=free_106*D && free_106*D+free_106>=1+S && free_106>=free_104 && S>=free_107*D && free_107*D+free_107>=1+S && free_104>=free_107 && D>=1 && R>=free_109*D && free_109+free_109*D>=1+R && free_109>=free_103 && R>=free_110*D && free_110*D+free_110>=1+R && free_103>=free_110 ], cost: 1 50: f148 -> f152 : E'=free_111, U1'=free_112, V1'=free_111, [ R>=0 ], cost: 1 51: f148 -> f152 : E'=-free_113, W1'=free_114, X1'=free_113, [ 0>=1+R ], cost: 1 7: f152 -> f156 : [ 0>=1+E ], cost: 1 8: f152 -> f156 : [ E>=1 ], cost: 1 63: f152 -> f132 : E'=0, Q1_1'=1+Q1_1, [ E==0 ], cost: 1 52: f156 -> f167 : D'=free_118, O'=free_119, R'=E+R, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=B, [ D1>=E*free_120+R*free_120 && E*free_120+R*free_120+free_120>=1+D1 && free_120>=free_115 && D1>=E*free_122+R*free_122 && E*free_122+free_122+R*free_122>=1+D1 && free_115>=free_122 && D1>=E*free_126 && E*free_126+free_126>=1+D1 && free_126>=free_117 && D1>=E*free_128 && E*free_128+free_128>=1+D1 && free_117>=free_128 && S>=free_121*E+free_121*R && free_121+free_121*E+free_121*R>=1+S && free_121>=free_116 && S>=free_124*E+free_124*R && free_124+free_124*E+free_124*R>=1+S && free_116>=free_124 && E+R>=free_127*E && free_127+free_127*E>=1+E+R && free_127>=free_118 && E+R>=E*free_123 && free_123+E*free_123>=1+E+R && free_118>=free_123 && S>=E*free_125 && E*free_125+free_125>=1+S && free_125>=free_119 && S>=E*free_129 && free_129+E*free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 ], cost: 1 53: f156 -> f167 : D'=free_133, O'=free_134, R'=E+R, S'=free_131, V'=free_132, D1'=free_130, Q1_1'=C1, [ Q1_1>=1+B && D1>=R*free_135+E*free_135 && R*free_135+free_135+E*free_135>=1+D1 && free_135>=free_130 && D1>=free_137*R+free_137*E && free_137+free_137*R+free_137*E>=1+D1 && free_130>=free_137 && D1>=E*free_141 && E*free_141+free_141>=1+D1 && free_141>=free_132 && D1>=E*free_143 && E*free_143+free_143>=1+D1 && free_132>=free_143 && S>=E*free_136+R*free_136 && E*free_136+R*free_136+free_136>=1+S && free_136>=free_131 && S>=E*free_139+R*free_139 && E*free_139+R*free_139+free_139>=1+S && free_131>=free_139 && E+R>=E*free_142 && free_142+E*free_142>=1+E+R && free_142>=free_133 && E+R>=E*free_138 && E*free_138+free_138>=1+E+R && free_133>=free_138 && S>=free_140*E && free_140+free_140*E>=1+S && free_140>=free_134 && S>=E*free_144 && free_144+E*free_144>=1+S && free_134>=free_144 && C1==Q1_1 ], cost: 1 54: f156 -> f167 : D'=free_148, O'=free_149, R'=E+R, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, [ B>=1+Q1_1 && D1>=free_150*E+free_150*R && free_150+free_150*E+free_150*R>=1+D1 && free_150>=free_145 && D1>=R*free_152+E*free_152 && R*free_152+free_152+E*free_152>=1+D1 && free_145>=free_152 && D1>=E*free_156 && E*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=E*free_158 && free_158+E*free_158>=1+D1 && free_147>=free_158 && S>=E*free_151+R*free_151 && E*free_151+free_151+R*free_151>=1+S && free_151>=free_146 && S>=E*free_154+free_154*R && E*free_154+free_154+free_154*R>=1+S && free_146>=free_154 && E+R>=E*free_157 && free_157+E*free_157>=1+E+R && free_157>=free_148 && E+R>=E*free_153 && E*free_153+free_153>=1+E+R && free_148>=free_153 && S>=E*free_155 && free_155+E*free_155>=1+S && free_155>=free_149 && S>=E*free_159 && E*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 ], cost: 1 55: f156 -> f167 : D'=free_163, O'=free_164, R'=E+R, S'=free_161, V'=free_162, D1'=free_160, [ C1>=1+Q1_1 && D1>=E*free_165+R*free_165 && E*free_165+R*free_165+free_165>=1+D1 && free_165>=free_160 && D1>=E*free_167+R*free_167 && E*free_167+free_167+R*free_167>=1+D1 && free_160>=free_167 && D1>=E*free_171 && free_171+E*free_171>=1+D1 && free_171>=free_162 && D1>=E*free_173 && E*free_173+free_173>=1+D1 && free_162>=free_173 && S>=free_166*E+free_166*R && free_166+free_166*E+free_166*R>=1+S && free_166>=free_161 && S>=free_169*E+free_169*R && free_169*E+free_169+free_169*R>=1+S && free_161>=free_169 && E+R>=E*free_172 && E*free_172+free_172>=1+E+R && free_172>=free_163 && E+R>=E*free_168 && free_168+E*free_168>=1+E+R && free_163>=free_168 && S>=E*free_170 && E*free_170+free_170>=1+S && free_170>=free_164 && S>=E*free_174 && E*free_174+free_174>=1+S && free_164>=free_174 ], cost: 1 56: f156 -> f167 : D'=free_178, O'=free_179, R'=E+R, S'=free_176, V'=free_177, D1'=free_175, [ Q1_1>=1+C1 && D1>=E*free_180+R*free_180 && E*free_180+R*free_180+free_180>=1+D1 && free_180>=free_175 && D1>=E*free_182+R*free_182 && E*free_182+free_182+R*free_182>=1+D1 && free_175>=free_182 && D1>=E*free_186 && free_186+E*free_186>=1+D1 && free_186>=free_177 && D1>=E*free_188 && free_188+E*free_188>=1+D1 && free_177>=free_188 && S>=free_181*E+free_181*R && free_181+free_181*E+free_181*R>=1+S && free_181>=free_176 && S>=free_184*E+free_184*R && free_184+free_184*E+free_184*R>=1+S && free_176>=free_184 && E+R>=E*free_187 && E*free_187+free_187>=1+E+R && free_187>=free_178 && E+R>=E*free_183 && free_183+E*free_183>=1+E+R && free_178>=free_183 && S>=E*free_185 && E*free_185+free_185>=1+S && free_185>=free_179 && S>=E*free_189 && free_189+E*free_189>=1+S && free_179>=free_189 ], cost: 1 9: f2 -> f4 : F'=0, [], cost: 1 10: f4 -> f7 : [ G>=H ], cost: 1 78: f4 -> f18 : A'=G, Q_1'=0, [ H>=1+G ], cost: 1 77: f7 -> f4 : H'=1+H, [ Q>=1+G ], cost: 1 11: f7 -> f7 : F'=F+free, Q'=1+Q, J'=free, [ G>=Q ], cost: 1 12: f18 -> f23 : C'=0, [ A>=1 ], cost: 1 76: f18 -> f1 : [ 0>=A ], cost: 1 13: f23 -> f34 : [ 1>=B ], cost: 1 14: f23 -> f31 : E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 ], cost: 1 15: f23 -> f31 : E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 ], cost: 1 16: f23 -> f31 : E'=F, K'=-free_7, L'=free_7, M'=free_8, [ B>=2 ], cost: 1 21: f34 -> f44 : D'=free_12, O'=free_13, P'=free_10*free_11, [ A>=1+B ], cost: 1 22: f34 -> f44 : D'=free_16, O'=free_17, P'=free_14*free_15, [ B>=1+A ], cost: 1 20: f34 -> f41 : A'=-1+A, B'=A, D'=free_9, N'=A, [ A==B ], cost: 1 18: f31 -> f23 : B'=-1+B, [ 0>=1+M ], cost: 1 19: f31 -> f23 : B'=-1+B, [ M>=1 ], cost: 1 17: f31 -> f34 : [], cost: 1 65: f41 -> f18 : [ C>=31 && A>=2+B ], cost: 1 66: f41 -> f18 : [ 1+B>=A ], cost: 1 64: f41 -> f23 : [ 30>=C && A>=2+B ], cost: 1 25: f61 -> f41 : A'=-2+A, V'=0, A1'=0, [ V==0 ], cost: 1 26: f61 -> f41 : A'=-2+A, A1'=0, [ 0>=1+V ], cost: 1 27: f61 -> f41 : A'=-2+A, A1'=0, [ V>=1 ], cost: 1 32: f80 -> f80 : H'=1+H, [ A>=H ], cost: 1 75: f80 -> f93 : C'=1+C, D'=3*free_226, E'=4*free_226, J'=free_226, O'=3*free_226, P'=free_225, Z1'=4*free_226-free_227, A2'=free_227, [ H>=1+A ], cost: 1 35: f93 -> f119 : E'=free_33+free_27+free_37, R'=free_32, S'=free_26, V'=free_28, D1'=free_30, E1'=free_33, F1'=free_37, G1'=free_27, H1'=free_36, Q1'=free_39, J1'=free_29, K1'=free_36*free_39+free_36*free_29, L1'=free_34, M1'=free_38, N1'=free_31, O1'=free_35, P1'=free_34*free_35+free_34*free_38+free_34*free_31, [ B>=1+C1 && C1>=B && free_47>=free_51*free_27+free_51*free_33+free_51*free_37 && free_51*free_27+free_51+free_51*free_33+free_51*free_37>=1+free_47 && free_51>=free_30 && free_47>=free_27*free_46+free_33*free_46+free_37*free_46 && free_27*free_46+free_33*free_46+free_46+free_37*free_46>=1+free_47 && free_30>=free_46 && O*D+free_28^2>=O*free_28+free_50*free_45+free_28*D+P && O*free_28+free_50*free_45+free_28*D+P+free_50>=1+O*D+free_28^2 && free_41+free_50>=free_37*free_44+free_33*free_44+free_27*free_44 && free_37*free_44+free_44+free_33*free_44+free_27*free_44>=1+free_41+free_50 && free_44>=free_32 && O*D+free_28^2>=O*free_28+free_28*D+free_49*free_45+P && O*free_28+free_28*D+free_49+free_49*free_45+P>=1+O*D+free_28^2 && free_49+free_41>=free_33*free_40+free_27*free_40+free_40*free_37 && free_40+free_33*free_40+free_27*free_40+free_40*free_37>=1+free_49+free_41 && free_32>=free_40 && free_43+free_28>=free_48*free_33+O+free_48*free_27+free_48*free_37+D && free_48+free_48*free_33+O+free_48*free_27+free_48*free_37+D>=1+free_43+free_28 && free_48>=free_26 && free_43+free_28>=free_33*free_42+free_27*free_42+O+D+free_37*free_42 && free_33*free_42+free_27*free_42+O+D+free_37*free_42+free_42>=1+free_43+free_28 && free_26>=free_42 ], cost: 1 36: f93 -> f119 : E'=free_59+free_53+free_63, R'=free_58, S'=free_52, V'=free_54, D1'=free_56, E1'=free_59, F1'=free_63, G1'=free_53, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_73>=free_77*free_59+free_77*free_63+free_77*free_53 && free_77*free_59+free_77+free_77*free_63+free_77*free_53>=1+free_73 && free_77>=free_56 && free_73>=free_72*free_53+free_59*free_72+free_72*free_63 && free_72*free_53+free_59*free_72+free_72*free_63+free_72>=1+free_73 && free_56>=free_72 && free_71+free_54>=free_59*free_76+O+free_53*free_76+free_63*free_76+D && free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D>=1+free_71+free_54 && free_76>=free_52 && free_71+free_54>=free_70*free_53+O+free_70*free_59+D+free_70*free_63 && free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63>=1+free_71+free_54 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_67+free_74>=free_59*free_66+free_53*free_66+free_66*free_63 && free_59*free_66+free_53*free_66+free_66+free_66*free_63>=1+free_67+free_74 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_74+free_69>=free_68*free_59+free_68*free_63+free_68*free_53 && free_68*free_59+free_68+free_68*free_63+free_68*free_53>=1+free_74+free_69 && free_58>=free_68 && C1>=1+B ], cost: 1 72: f93 -> f124 : [ B>=1+C1 ], cost: 1 73: f93 -> f124 : E'=free_207+free_211+free_212, R'=free_210, S'=free_206, V'=free_208, C1'=B, D1'=free_209, E1'=free_211, F1'=free_212, G1'=free_207, [ free_223>=free_212*free_219+free_211*free_219+free_207*free_219 && free_212*free_219+free_211*free_219+free_207*free_219+free_219>=1+free_223 && free_219>=free_209 && free_223>=free_212*free_213+free_207*free_213+free_211*free_213 && free_212*free_213+free_207*free_213+free_211*free_213+free_213>=1+free_223 && free_209>=free_213 && free_208^2+O*D>=O*free_208+free_208*D+P+free_222*free_216 && O*free_208+free_208*D+P+free_216+free_222*free_216>=1+free_208^2+O*D && free_218+free_216>=free_214*free_212+free_207*free_214+free_214*free_211 && free_214*free_212+free_214+free_207*free_214+free_214*free_211>=1+free_218+free_216 && free_214>=free_210 && free_208^2+O*D>=O*free_208+free_224*free_222+free_208*D+P && O*free_208+free_224*free_222+free_208*D+free_224+P>=1+free_208^2+O*D && free_224+free_218>=free_207*free_220+free_220*free_211+free_220*free_212 && free_220+free_207*free_220+free_220*free_211+free_220*free_212>=1+free_224+free_218 && free_210>=free_220 && free_208+free_221>=free_217*free_211+free_207*free_217+O+free_217*free_212+D && free_217*free_211+free_217+free_207*free_217+O+free_217*free_212+D>=1+free_208+free_221 && free_217>=free_206 && free_208+free_221>=free_211*free_215+free_207*free_215+free_215*free_212+O+D && free_211*free_215+free_207*free_215+free_215*free_212+O+free_215+D>=1+free_208+free_221 && free_206>=free_215 && B==C1 ], cost: 1 37: f119 -> f93 : C1'=-1+C1, [ 0>=1+K1 ], cost: 1 38: f119 -> f93 : C1'=-1+C1, [ K1>=1 ], cost: 1 74: f119 -> f124 : [], cost: 1 39: f124 -> f124 : H'=3+C1, [ A>=2+C1 && H==2+C1 ], cost: 1 40: f124 -> f124 : H'=1+H, [ 1+C1>=H && A>=H ], cost: 1 41: f124 -> f124 : H'=1+H, [ H>=3+C1 && A>=H ], cost: 1 71: f124 -> f132 : [ H>=1+A ], cost: 1 42: f132 -> f148 : Q1_1'=C1, [ A>=1+Q1_1 && C1==Q1_1 ], cost: 1 70: f132 -> f41 : [ Q1_1>=A ], cost: 1 43: f132 -> f138 : R'=free_78, S'=free_79, D1'=0, [ C1>=1+Q1_1 && A>=1+Q1_1 ], cost: 1 44: f132 -> f138 : R'=free_80, S'=free_81, D1'=0, [ Q1_1>=1+C1 && A>=1+Q1_1 ], cost: 1 45: f138 -> f144 : D'=free_84+free_82+free_83, Q1_1'=-1+A, R1'=free_83, S1'=free_84, T1'=free_82, [ 1+Q1_1==A ], cost: 1 46: f138 -> f144 : D'=free_87+free_88+free_85, D1'=free_86, R1'=free_87, S1'=free_88, T1'=free_85, [ A>=2+Q1_1 ], cost: 1 47: f138 -> f144 : D'=free_91+free_92+free_89, D1'=free_90, R1'=free_91, S1'=free_92, T1'=free_89, [ Q1_1>=A ], cost: 1 57: f167 -> f167 : Q'=1+Q, R'=free_191*S+free_190, Q1_1'=-1+A, [ A>=Q && 1+Q1_1==A ], cost: 1 58: f167 -> f167 : Q'=1+Q, R'=free_194*S+free_193+free_192*D1, [ A>=2+Q1_1 && A>=Q ], cost: 1 59: f167 -> f167 : Q'=1+Q, R'=free_195*D1+free_197*S+free_196, [ Q1_1>=A && A>=Q ], cost: 1 68: f167 -> f181 : Y1'=A, [ Q>=1+A && 2+Q1_1>=A ], cost: 1 69: f167 -> f181 : Y1'=3+Q1_1, [ Q>=1+A && A>=3+Q1_1 ], cost: 1 67: f181 -> f132 : Q1_1'=1+Q1_1, [ H>=1+Y1 ], cost: 1 60: f181 -> f181 : H'=1+H, R'=free_198*D+O*free_199, Q1_1'=-1+A, [ Y1>=H && 1+Q1_1==A ], cost: 1 61: f181 -> f181 : H'=1+H, R'=free_201*D+free_200*V+O*free_202, [ A>=2+Q1_1 && Y1>=H ], cost: 1 62: f181 -> f181 : H'=1+H, R'=V*free_203+free_204*D+O*free_205, [ Q1_1>=A && Y1>=H ], cost: 1 Simplified the transitions: Start location: f2 0: f44 -> f73 : [ A>=2+B ], cost: 1 1: f44 -> f73 : [ B>=A ], cost: 1 28: f44 -> f41 : A'=-2+A, B'=-1+A, D'=Q_1+D, J'=free_24, R'=2*O-2*D, S'=4*O^2-8*O*D+4*D^2+P, T'=free_25, U'=free_24, V'=free_24, B1'=Q_1+2*O-D, [ 8*O*D>=1+4*O^2+4*D^2+P && 1+B==A ], cost: 1 23: f44 -> f61 : B'=-1+A, D'=Q_1+D, J'=2*O-2*D, R'=2*O-2*D, S'=4*O^2-8*O*D+4*D^2+P, T'=free_19, U'=free_20, V'=free_18+2*O-2*D, W'=free_18, X'=free_18, Y'=Q_1+free_18+2*O-D, [ 4*O^2+4*D^2+P>=8*O*D && 2*O>=2*D && 1+B==A ], cost: 1 24: f44 -> f61 : B'=-1+A, D'=Q_1+D, J'=2*O-2*D, R'=2*O-2*D, S'=4*O^2-8*O*D+4*D^2+P, T'=free_22, U'=free_23, V'=-free_21+2*O-2*D, X'=-free_21, Y'=Q_1-free_21+2*O-D, Z'=free_21, [ 4*O^2+4*D^2+P>=8*O*D && 2*D>=1+2*O && 1+B==A ], cost: 1 2: f73 -> f75 : [ 29>=C ], cost: 1 3: f73 -> f75 : [ C>=31 ], cost: 1 29: f73 -> f75 : C'=30, [ C==30 ], cost: 1 4: f75 -> f77 : [ 9>=C ], cost: 1 5: f75 -> f77 : [ C>=11 ], cost: 1 31: f75 -> f80 : C'=10, Q_1'=Q_1+D, [ C==10 ], cost: 1 30: f77 -> f80 : C'=20, Q_1'=Q_1+D, [ C==20 ], cost: 1 33: f77 -> f93 : C'=1+C, [ 19>=C ], cost: 1 34: f77 -> f93 : C'=1+C, [ C>=21 ], cost: 1 6: f144 -> f148 : D'=0, [ D==0 ], cost: 1 48: f144 -> f148 : R'=free_94, S'=free_95, D1'=free_93, [ D1>=D*free_99 && D*free_99+free_99>=1+D1 && free_99>=free_93 && D1>=free_96*D && free_96+free_96*D>=1+D1 && free_93>=free_96 && S>=free_97*D && free_97+free_97*D>=1+S && free_97>=free_95 && S>=free_98*D && free_98*D+free_98>=1+S && free_95>=free_98 && 0>=1+D && R>=free_100*D && free_100+free_100*D>=1+R && free_100>=free_94 && R>=free_101*D && free_101+free_101*D>=1+R && free_94>=free_101 ], cost: 1 49: f144 -> f148 : R'=free_103, S'=free_104, D1'=free_102, [ D1>=free_108*D && free_108*D+free_108>=1+D1 && free_108>=free_102 && D1>=free_105*D && free_105*D+free_105>=1+D1 && free_102>=free_105 && S>=free_106*D && free_106*D+free_106>=1+S && free_106>=free_104 && S>=free_107*D && free_107*D+free_107>=1+S && free_104>=free_107 && D>=1 && R>=free_109*D && free_109+free_109*D>=1+R && free_109>=free_103 && R>=free_110*D && free_110*D+free_110>=1+R && free_103>=free_110 ], cost: 1 50: f148 -> f152 : E'=free_111, U1'=free_112, V1'=free_111, [ R>=0 ], cost: 1 51: f148 -> f152 : E'=-free_113, W1'=free_114, X1'=free_113, [ 0>=1+R ], cost: 1 7: f152 -> f156 : [ 0>=1+E ], cost: 1 8: f152 -> f156 : [ E>=1 ], cost: 1 63: f152 -> f132 : E'=0, Q1_1'=1+Q1_1, [ E==0 ], cost: 1 52: f156 -> f167 : D'=free_118, O'=free_119, R'=E+R, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=B, [ D1>=E*free_120+R*free_120 && E*free_120+R*free_120+free_120>=1+D1 && free_120>=free_115 && D1>=E*free_122+R*free_122 && E*free_122+free_122+R*free_122>=1+D1 && free_115>=free_122 && D1>=E*free_126 && E*free_126+free_126>=1+D1 && free_126>=free_117 && D1>=E*free_128 && E*free_128+free_128>=1+D1 && free_117>=free_128 && S>=free_121*E+free_121*R && free_121+free_121*E+free_121*R>=1+S && free_121>=free_116 && S>=free_124*E+free_124*R && free_124+free_124*E+free_124*R>=1+S && free_116>=free_124 && E+R>=free_127*E && free_127+free_127*E>=1+E+R && free_127>=free_118 && E+R>=E*free_123 && free_123+E*free_123>=1+E+R && free_118>=free_123 && S>=E*free_125 && E*free_125+free_125>=1+S && free_125>=free_119 && S>=E*free_129 && free_129+E*free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 ], cost: 1 53: f156 -> f167 : D'=free_133, O'=free_134, R'=E+R, S'=free_131, V'=free_132, D1'=free_130, Q1_1'=C1, [ Q1_1>=1+B && D1>=R*free_135+E*free_135 && R*free_135+free_135+E*free_135>=1+D1 && free_135>=free_130 && D1>=free_137*R+free_137*E && free_137+free_137*R+free_137*E>=1+D1 && free_130>=free_137 && D1>=E*free_141 && E*free_141+free_141>=1+D1 && free_141>=free_132 && D1>=E*free_143 && E*free_143+free_143>=1+D1 && free_132>=free_143 && S>=E*free_136+R*free_136 && E*free_136+R*free_136+free_136>=1+S && free_136>=free_131 && S>=E*free_139+R*free_139 && E*free_139+R*free_139+free_139>=1+S && free_131>=free_139 && E+R>=E*free_142 && free_142+E*free_142>=1+E+R && free_142>=free_133 && E+R>=E*free_138 && E*free_138+free_138>=1+E+R && free_133>=free_138 && S>=free_140*E && free_140+free_140*E>=1+S && free_140>=free_134 && S>=E*free_144 && free_144+E*free_144>=1+S && free_134>=free_144 && C1==Q1_1 ], cost: 1 54: f156 -> f167 : D'=free_148, O'=free_149, R'=E+R, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, [ B>=1+Q1_1 && D1>=free_150*E+free_150*R && free_150+free_150*E+free_150*R>=1+D1 && free_150>=free_145 && D1>=R*free_152+E*free_152 && R*free_152+free_152+E*free_152>=1+D1 && free_145>=free_152 && D1>=E*free_156 && E*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=E*free_158 && free_158+E*free_158>=1+D1 && free_147>=free_158 && S>=E*free_151+R*free_151 && E*free_151+free_151+R*free_151>=1+S && free_151>=free_146 && S>=E*free_154+free_154*R && E*free_154+free_154+free_154*R>=1+S && free_146>=free_154 && E+R>=E*free_157 && free_157+E*free_157>=1+E+R && free_157>=free_148 && E+R>=E*free_153 && E*free_153+free_153>=1+E+R && free_148>=free_153 && S>=E*free_155 && free_155+E*free_155>=1+S && free_155>=free_149 && S>=E*free_159 && E*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 ], cost: 1 55: f156 -> f167 : D'=free_163, O'=free_164, R'=E+R, S'=free_161, V'=free_162, D1'=free_160, [ C1>=1+Q1_1 && D1>=E*free_165+R*free_165 && E*free_165+R*free_165+free_165>=1+D1 && free_165>=free_160 && D1>=E*free_167+R*free_167 && E*free_167+free_167+R*free_167>=1+D1 && free_160>=free_167 && D1>=E*free_171 && free_171+E*free_171>=1+D1 && free_171>=free_162 && D1>=E*free_173 && E*free_173+free_173>=1+D1 && free_162>=free_173 && S>=free_166*E+free_166*R && free_166+free_166*E+free_166*R>=1+S && free_166>=free_161 && S>=free_169*E+free_169*R && free_169*E+free_169+free_169*R>=1+S && free_161>=free_169 && E+R>=E*free_172 && E*free_172+free_172>=1+E+R && free_172>=free_163 && E+R>=E*free_168 && free_168+E*free_168>=1+E+R && free_163>=free_168 && S>=E*free_170 && E*free_170+free_170>=1+S && free_170>=free_164 && S>=E*free_174 && E*free_174+free_174>=1+S && free_164>=free_174 ], cost: 1 56: f156 -> f167 : D'=free_178, O'=free_179, R'=E+R, S'=free_176, V'=free_177, D1'=free_175, [ Q1_1>=1+C1 && D1>=E*free_180+R*free_180 && E*free_180+R*free_180+free_180>=1+D1 && free_180>=free_175 && D1>=E*free_182+R*free_182 && E*free_182+free_182+R*free_182>=1+D1 && free_175>=free_182 && D1>=E*free_186 && free_186+E*free_186>=1+D1 && free_186>=free_177 && D1>=E*free_188 && free_188+E*free_188>=1+D1 && free_177>=free_188 && S>=free_181*E+free_181*R && free_181+free_181*E+free_181*R>=1+S && free_181>=free_176 && S>=free_184*E+free_184*R && free_184+free_184*E+free_184*R>=1+S && free_176>=free_184 && E+R>=E*free_187 && E*free_187+free_187>=1+E+R && free_187>=free_178 && E+R>=E*free_183 && free_183+E*free_183>=1+E+R && free_178>=free_183 && S>=E*free_185 && E*free_185+free_185>=1+S && free_185>=free_179 && S>=E*free_189 && free_189+E*free_189>=1+S && free_179>=free_189 ], cost: 1 9: f2 -> f4 : F'=0, [], cost: 1 10: f4 -> f7 : [ G>=H ], cost: 1 78: f4 -> f18 : A'=G, Q_1'=0, [ H>=1+G ], cost: 1 77: f7 -> f4 : H'=1+H, [ Q>=1+G ], cost: 1 11: f7 -> f7 : F'=F+free, Q'=1+Q, J'=free, [ G>=Q ], cost: 1 12: f18 -> f23 : C'=0, [ A>=1 ], cost: 1 13: f23 -> f34 : [ 1>=B ], cost: 1 14: f23 -> f31 : E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 ], cost: 1 15: f23 -> f31 : E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 ], cost: 1 16: f23 -> f31 : E'=F, K'=-free_7, L'=free_7, M'=free_8, [ B>=2 ], cost: 1 21: f34 -> f44 : D'=free_12, O'=free_13, P'=free_10*free_11, [ A>=1+B ], cost: 1 22: f34 -> f44 : D'=free_16, O'=free_17, P'=free_14*free_15, [ B>=1+A ], cost: 1 20: f34 -> f41 : A'=-1+A, B'=A, D'=free_9, N'=A, [ A==B ], cost: 1 18: f31 -> f23 : B'=-1+B, [ 0>=1+M ], cost: 1 19: f31 -> f23 : B'=-1+B, [ M>=1 ], cost: 1 17: f31 -> f34 : [], cost: 1 65: f41 -> f18 : [ C>=31 && A>=2+B ], cost: 1 66: f41 -> f18 : [ 1+B>=A ], cost: 1 64: f41 -> f23 : [ 30>=C && A>=2+B ], cost: 1 25: f61 -> f41 : A'=-2+A, V'=0, A1'=0, [ V==0 ], cost: 1 26: f61 -> f41 : A'=-2+A, A1'=0, [ 0>=1+V ], cost: 1 27: f61 -> f41 : A'=-2+A, A1'=0, [ V>=1 ], cost: 1 32: f80 -> f80 : H'=1+H, [ A>=H ], cost: 1 75: f80 -> f93 : C'=1+C, D'=3*free_226, E'=4*free_226, J'=free_226, O'=3*free_226, P'=free_225, Z1'=4*free_226-free_227, A2'=free_227, [ H>=1+A ], cost: 1 35: f93 -> f119 : E'=free_33+free_27+free_37, R'=free_32, S'=free_26, V'=free_28, D1'=free_30, E1'=free_33, F1'=free_37, G1'=free_27, H1'=free_36, Q1'=free_39, J1'=free_29, K1'=free_36*free_39+free_36*free_29, L1'=free_34, M1'=free_38, N1'=free_31, O1'=free_35, P1'=free_34*free_35+free_34*free_38+free_34*free_31, [ B>=1+C1 && C1>=B && free_51>=free_30 && free_30>=free_46 && O*D+free_28^2>=O*free_28+free_50*free_45+free_28*D+P && O*free_28+free_50*free_45+free_28*D+P+free_50>=1+O*D+free_28^2 && free_44>=free_32 && O*D+free_28^2>=O*free_28+free_28*D+free_49*free_45+P && O*free_28+free_28*D+free_49+free_49*free_45+P>=1+O*D+free_28^2 && free_32>=free_40 && free_48>=free_26 && free_26>=free_42 && free_48*free_33+O+free_48*free_27-free_28+free_48*free_37+D<=-1+free_48+free_48*free_33+O+free_48*free_27-free_28+free_48*free_37+D && free_33*free_42+free_27*free_42+O-free_28+D+free_37*free_42<=-1+free_48+free_48*free_33+O+free_48*free_27-free_28+free_48*free_37+D && free_48*free_33+O+free_48*free_27-free_28+free_48*free_37+D<=-1+free_33*free_42+free_27*free_42+O-free_28+D+free_37*free_42+free_42 && free_33*free_42+free_27*free_42+O-free_28+D+free_37*free_42<=-1+free_33*free_42+free_27*free_42+O-free_28+D+free_37*free_42+free_42 && free_37*free_44-free_50+free_33*free_44+free_27*free_44<=-1+free_37*free_44+free_44-free_50+free_33*free_44+free_27*free_44 && free_33*free_40-free_49+free_27*free_40+free_40*free_37<=-1+free_37*free_44+free_44-free_50+free_33*free_44+free_27*free_44 && free_37*free_44-free_50+free_33*free_44+free_27*free_44<=-1+free_40+free_33*free_40-free_49+free_27*free_40+free_40*free_37 && free_33*free_40-free_49+free_27*free_40+free_40*free_37<=-1+free_40+free_33*free_40-free_49+free_27*free_40+free_40*free_37 && free_51*free_27+free_51*free_33+free_51*free_37<=-1+free_51*free_27+free_51+free_51*free_33+free_51*free_37 && free_27*free_46+free_33*free_46+free_37*free_46<=-1+free_51*free_27+free_51+free_51*free_33+free_51*free_37 && free_51*free_27+free_51*free_33+free_51*free_37<=-1+free_27*free_46+free_33*free_46+free_46+free_37*free_46 && free_27*free_46+free_33*free_46+free_37*free_46<=-1+free_27*free_46+free_33*free_46+free_46+free_37*free_46 ], cost: 1 36: f93 -> f119 : E'=free_59+free_53+free_63, R'=free_58, S'=free_52, V'=free_54, D1'=free_56, E1'=free_59, F1'=free_63, G1'=free_53, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 ], cost: 1 72: f93 -> f124 : [ B>=1+C1 ], cost: 1 73: f93 -> f124 : E'=free_207+free_211+free_212, R'=free_210, S'=free_206, V'=free_208, C1'=B, D1'=free_209, E1'=free_211, F1'=free_212, G1'=free_207, [ free_223>=free_212*free_219+free_211*free_219+free_207*free_219 && free_212*free_219+free_211*free_219+free_207*free_219+free_219>=1+free_223 && free_219>=free_209 && free_223>=free_212*free_213+free_207*free_213+free_211*free_213 && free_212*free_213+free_207*free_213+free_211*free_213+free_213>=1+free_223 && free_209>=free_213 && free_208^2+O*D>=O*free_208+free_208*D+P+free_222*free_216 && O*free_208+free_208*D+P+free_216+free_222*free_216>=1+free_208^2+O*D && free_218+free_216>=free_214*free_212+free_207*free_214+free_214*free_211 && free_214*free_212+free_214+free_207*free_214+free_214*free_211>=1+free_218+free_216 && free_214>=free_210 && free_208^2+O*D>=O*free_208+free_224*free_222+free_208*D+P && O*free_208+free_224*free_222+free_208*D+free_224+P>=1+free_208^2+O*D && free_224+free_218>=free_207*free_220+free_220*free_211+free_220*free_212 && free_220+free_207*free_220+free_220*free_211+free_220*free_212>=1+free_224+free_218 && free_210>=free_220 && free_208+free_221>=free_217*free_211+free_207*free_217+O+free_217*free_212+D && free_217*free_211+free_217+free_207*free_217+O+free_217*free_212+D>=1+free_208+free_221 && free_217>=free_206 && free_208+free_221>=free_211*free_215+free_207*free_215+free_215*free_212+O+D && free_211*free_215+free_207*free_215+free_215*free_212+O+free_215+D>=1+free_208+free_221 && free_206>=free_215 && B==C1 ], cost: 1 37: f119 -> f93 : C1'=-1+C1, [ 0>=1+K1 ], cost: 1 38: f119 -> f93 : C1'=-1+C1, [ K1>=1 ], cost: 1 74: f119 -> f124 : [], cost: 1 39: f124 -> f124 : H'=3+C1, [ A>=2+C1 && H==2+C1 ], cost: 1 40: f124 -> f124 : H'=1+H, [ 1+C1>=H && A>=H ], cost: 1 41: f124 -> f124 : H'=1+H, [ H>=3+C1 && A>=H ], cost: 1 71: f124 -> f132 : [ H>=1+A ], cost: 1 42: f132 -> f148 : Q1_1'=C1, [ A>=1+Q1_1 && C1==Q1_1 ], cost: 1 70: f132 -> f41 : [ Q1_1>=A ], cost: 1 43: f132 -> f138 : R'=free_78, S'=free_79, D1'=0, [ C1>=1+Q1_1 && A>=1+Q1_1 ], cost: 1 44: f132 -> f138 : R'=free_80, S'=free_81, D1'=0, [ Q1_1>=1+C1 && A>=1+Q1_1 ], cost: 1 45: f138 -> f144 : D'=free_84+free_82+free_83, Q1_1'=-1+A, R1'=free_83, S1'=free_84, T1'=free_82, [ 1+Q1_1==A ], cost: 1 46: f138 -> f144 : D'=free_87+free_88+free_85, D1'=free_86, R1'=free_87, S1'=free_88, T1'=free_85, [ A>=2+Q1_1 ], cost: 1 47: f138 -> f144 : D'=free_91+free_92+free_89, D1'=free_90, R1'=free_91, S1'=free_92, T1'=free_89, [ Q1_1>=A ], cost: 1 57: f167 -> f167 : Q'=1+Q, R'=free_191*S+free_190, Q1_1'=-1+A, [ A>=Q && 1+Q1_1==A ], cost: 1 58: f167 -> f167 : Q'=1+Q, R'=free_194*S+free_193+free_192*D1, [ A>=2+Q1_1 && A>=Q ], cost: 1 59: f167 -> f167 : Q'=1+Q, R'=free_195*D1+free_197*S+free_196, [ Q1_1>=A && A>=Q ], cost: 1 68: f167 -> f181 : Y1'=A, [ Q>=1+A && 2+Q1_1>=A ], cost: 1 69: f167 -> f181 : Y1'=3+Q1_1, [ Q>=1+A && A>=3+Q1_1 ], cost: 1 67: f181 -> f132 : Q1_1'=1+Q1_1, [ H>=1+Y1 ], cost: 1 60: f181 -> f181 : H'=1+H, R'=free_198*D+O*free_199, Q1_1'=-1+A, [ Y1>=H && 1+Q1_1==A ], cost: 1 61: f181 -> f181 : H'=1+H, R'=free_201*D+free_200*V+O*free_202, [ A>=2+Q1_1 && Y1>=H ], cost: 1 62: f181 -> f181 : H'=1+H, R'=V*free_203+free_204*D+O*free_205, [ Q1_1>=A && Y1>=H ], cost: 1 Eliminating 1 self-loops for location f7 Self-Loop 11 has the metering function: 1-Q+G, resulting in the new transition 79. Removing the self-loops: 11. Eliminating 1 self-loops for location f80 Self-Loop 32 has the metering function: 1-H+A, resulting in the new transition 80. Removing the self-loops: 32. Eliminating 3 self-loops for location f124 Self-Loop 39 has the metering function: 3-H+C1, resulting in the new transition 81. Self-Loop 41 has the metering function: 1-H+A, resulting in the new transition 83. Found this metering function when nesting loops: meter, Found this metering function when nesting loops: meter_1, Removing the self-loops: 39 40 41. Adding an epsilon transition (to model nonexecution of the loops): 84. Eliminating 3 self-loops for location f167 Self-Loop 57 has the metering function: 1-Q+A, resulting in the new transition 85. Self-Loop 58 has the metering function: 1-Q+A, resulting in the new transition 86. Self-Loop 59 has the metering function: 1-Q+A, resulting in the new transition 87. Removing the self-loops: 57 58 59. Eliminating 3 self-loops for location f181 Self-Loop 60 has the metering function: 1-H+Y1, resulting in the new transition 88. Self-Loop 61 has the metering function: 1-H+Y1, resulting in the new transition 89. Self-Loop 62 has the metering function: 1-H+Y1, resulting in the new transition 90. Removing the self-loops: 60 61 62. Removed all Self-loops using metering functions (where possible): Start location: f2 0: f44 -> f73 : [ A>=2+B ], cost: 1 1: f44 -> f73 : [ B>=A ], cost: 1 28: f44 -> f41 : A'=-2+A, B'=-1+A, D'=Q_1+D, J'=free_24, R'=2*O-2*D, S'=4*O^2-8*O*D+4*D^2+P, T'=free_25, U'=free_24, V'=free_24, B1'=Q_1+2*O-D, [ 8*O*D>=1+4*O^2+4*D^2+P && 1+B==A ], cost: 1 23: f44 -> f61 : B'=-1+A, D'=Q_1+D, J'=2*O-2*D, R'=2*O-2*D, S'=4*O^2-8*O*D+4*D^2+P, T'=free_19, U'=free_20, V'=free_18+2*O-2*D, W'=free_18, X'=free_18, Y'=Q_1+free_18+2*O-D, [ 4*O^2+4*D^2+P>=8*O*D && 2*O>=2*D && 1+B==A ], cost: 1 24: f44 -> f61 : B'=-1+A, D'=Q_1+D, J'=2*O-2*D, R'=2*O-2*D, S'=4*O^2-8*O*D+4*D^2+P, T'=free_22, U'=free_23, V'=-free_21+2*O-2*D, X'=-free_21, Y'=Q_1-free_21+2*O-D, Z'=free_21, [ 4*O^2+4*D^2+P>=8*O*D && 2*D>=1+2*O && 1+B==A ], cost: 1 2: f73 -> f75 : [ 29>=C ], cost: 1 3: f73 -> f75 : [ C>=31 ], cost: 1 29: f73 -> f75 : C'=30, [ C==30 ], cost: 1 4: f75 -> f77 : [ 9>=C ], cost: 1 5: f75 -> f77 : [ C>=11 ], cost: 1 31: f75 -> f80 : C'=10, Q_1'=Q_1+D, [ C==10 ], cost: 1 30: f77 -> f80 : C'=20, Q_1'=Q_1+D, [ C==20 ], cost: 1 33: f77 -> f93 : C'=1+C, [ 19>=C ], cost: 1 34: f77 -> f93 : C'=1+C, [ C>=21 ], cost: 1 6: f144 -> f148 : D'=0, [ D==0 ], cost: 1 48: f144 -> f148 : R'=free_94, S'=free_95, D1'=free_93, [ D1>=D*free_99 && D*free_99+free_99>=1+D1 && free_99>=free_93 && D1>=free_96*D && free_96+free_96*D>=1+D1 && free_93>=free_96 && S>=free_97*D && free_97+free_97*D>=1+S && free_97>=free_95 && S>=free_98*D && free_98*D+free_98>=1+S && free_95>=free_98 && 0>=1+D && R>=free_100*D && free_100+free_100*D>=1+R && free_100>=free_94 && R>=free_101*D && free_101+free_101*D>=1+R && free_94>=free_101 ], cost: 1 49: f144 -> f148 : R'=free_103, S'=free_104, D1'=free_102, [ D1>=free_108*D && free_108*D+free_108>=1+D1 && free_108>=free_102 && D1>=free_105*D && free_105*D+free_105>=1+D1 && free_102>=free_105 && S>=free_106*D && free_106*D+free_106>=1+S && free_106>=free_104 && S>=free_107*D && free_107*D+free_107>=1+S && free_104>=free_107 && D>=1 && R>=free_109*D && free_109+free_109*D>=1+R && free_109>=free_103 && R>=free_110*D && free_110*D+free_110>=1+R && free_103>=free_110 ], cost: 1 50: f148 -> f152 : E'=free_111, U1'=free_112, V1'=free_111, [ R>=0 ], cost: 1 51: f148 -> f152 : E'=-free_113, W1'=free_114, X1'=free_113, [ 0>=1+R ], cost: 1 7: f152 -> f156 : [ 0>=1+E ], cost: 1 8: f152 -> f156 : [ E>=1 ], cost: 1 63: f152 -> f132 : E'=0, Q1_1'=1+Q1_1, [ E==0 ], cost: 1 52: f156 -> f167 : D'=free_118, O'=free_119, R'=E+R, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=B, [ D1>=E*free_120+R*free_120 && E*free_120+R*free_120+free_120>=1+D1 && free_120>=free_115 && D1>=E*free_122+R*free_122 && E*free_122+free_122+R*free_122>=1+D1 && free_115>=free_122 && D1>=E*free_126 && E*free_126+free_126>=1+D1 && free_126>=free_117 && D1>=E*free_128 && E*free_128+free_128>=1+D1 && free_117>=free_128 && S>=free_121*E+free_121*R && free_121+free_121*E+free_121*R>=1+S && free_121>=free_116 && S>=free_124*E+free_124*R && free_124+free_124*E+free_124*R>=1+S && free_116>=free_124 && E+R>=free_127*E && free_127+free_127*E>=1+E+R && free_127>=free_118 && E+R>=E*free_123 && free_123+E*free_123>=1+E+R && free_118>=free_123 && S>=E*free_125 && E*free_125+free_125>=1+S && free_125>=free_119 && S>=E*free_129 && free_129+E*free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 ], cost: 1 53: f156 -> f167 : D'=free_133, O'=free_134, R'=E+R, S'=free_131, V'=free_132, D1'=free_130, Q1_1'=C1, [ Q1_1>=1+B && D1>=R*free_135+E*free_135 && R*free_135+free_135+E*free_135>=1+D1 && free_135>=free_130 && D1>=free_137*R+free_137*E && free_137+free_137*R+free_137*E>=1+D1 && free_130>=free_137 && D1>=E*free_141 && E*free_141+free_141>=1+D1 && free_141>=free_132 && D1>=E*free_143 && E*free_143+free_143>=1+D1 && free_132>=free_143 && S>=E*free_136+R*free_136 && E*free_136+R*free_136+free_136>=1+S && free_136>=free_131 && S>=E*free_139+R*free_139 && E*free_139+R*free_139+free_139>=1+S && free_131>=free_139 && E+R>=E*free_142 && free_142+E*free_142>=1+E+R && free_142>=free_133 && E+R>=E*free_138 && E*free_138+free_138>=1+E+R && free_133>=free_138 && S>=free_140*E && free_140+free_140*E>=1+S && free_140>=free_134 && S>=E*free_144 && free_144+E*free_144>=1+S && free_134>=free_144 && C1==Q1_1 ], cost: 1 54: f156 -> f167 : D'=free_148, O'=free_149, R'=E+R, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, [ B>=1+Q1_1 && D1>=free_150*E+free_150*R && free_150+free_150*E+free_150*R>=1+D1 && free_150>=free_145 && D1>=R*free_152+E*free_152 && R*free_152+free_152+E*free_152>=1+D1 && free_145>=free_152 && D1>=E*free_156 && E*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=E*free_158 && free_158+E*free_158>=1+D1 && free_147>=free_158 && S>=E*free_151+R*free_151 && E*free_151+free_151+R*free_151>=1+S && free_151>=free_146 && S>=E*free_154+free_154*R && E*free_154+free_154+free_154*R>=1+S && free_146>=free_154 && E+R>=E*free_157 && free_157+E*free_157>=1+E+R && free_157>=free_148 && E+R>=E*free_153 && E*free_153+free_153>=1+E+R && free_148>=free_153 && S>=E*free_155 && free_155+E*free_155>=1+S && free_155>=free_149 && S>=E*free_159 && E*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 ], cost: 1 55: f156 -> f167 : D'=free_163, O'=free_164, R'=E+R, S'=free_161, V'=free_162, D1'=free_160, [ C1>=1+Q1_1 && D1>=E*free_165+R*free_165 && E*free_165+R*free_165+free_165>=1+D1 && free_165>=free_160 && D1>=E*free_167+R*free_167 && E*free_167+free_167+R*free_167>=1+D1 && free_160>=free_167 && D1>=E*free_171 && free_171+E*free_171>=1+D1 && free_171>=free_162 && D1>=E*free_173 && E*free_173+free_173>=1+D1 && free_162>=free_173 && S>=free_166*E+free_166*R && free_166+free_166*E+free_166*R>=1+S && free_166>=free_161 && S>=free_169*E+free_169*R && free_169*E+free_169+free_169*R>=1+S && free_161>=free_169 && E+R>=E*free_172 && E*free_172+free_172>=1+E+R && free_172>=free_163 && E+R>=E*free_168 && free_168+E*free_168>=1+E+R && free_163>=free_168 && S>=E*free_170 && E*free_170+free_170>=1+S && free_170>=free_164 && S>=E*free_174 && E*free_174+free_174>=1+S && free_164>=free_174 ], cost: 1 56: f156 -> f167 : D'=free_178, O'=free_179, R'=E+R, S'=free_176, V'=free_177, D1'=free_175, [ Q1_1>=1+C1 && D1>=E*free_180+R*free_180 && E*free_180+R*free_180+free_180>=1+D1 && free_180>=free_175 && D1>=E*free_182+R*free_182 && E*free_182+free_182+R*free_182>=1+D1 && free_175>=free_182 && D1>=E*free_186 && free_186+E*free_186>=1+D1 && free_186>=free_177 && D1>=E*free_188 && free_188+E*free_188>=1+D1 && free_177>=free_188 && S>=free_181*E+free_181*R && free_181+free_181*E+free_181*R>=1+S && free_181>=free_176 && S>=free_184*E+free_184*R && free_184+free_184*E+free_184*R>=1+S && free_176>=free_184 && E+R>=E*free_187 && E*free_187+free_187>=1+E+R && free_187>=free_178 && E+R>=E*free_183 && free_183+E*free_183>=1+E+R && free_178>=free_183 && S>=E*free_185 && E*free_185+free_185>=1+S && free_185>=free_179 && S>=E*free_189 && free_189+E*free_189>=1+S && free_179>=free_189 ], cost: 1 9: f2 -> f4 : F'=0, [], cost: 1 10: f4 -> f7 : [ G>=H ], cost: 1 78: f4 -> f18 : A'=G, Q_1'=0, [ H>=1+G ], cost: 1 79: f7 -> [26] : F'=F-(-1+Q-G)*free, Q'=1+G, J'=free, [ G>=Q ], cost: 1-Q+G 12: f18 -> f23 : C'=0, [ A>=1 ], cost: 1 13: f23 -> f34 : [ 1>=B ], cost: 1 14: f23 -> f31 : E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 ], cost: 1 15: f23 -> f31 : E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 ], cost: 1 16: f23 -> f31 : E'=F, K'=-free_7, L'=free_7, M'=free_8, [ B>=2 ], cost: 1 21: f34 -> f44 : D'=free_12, O'=free_13, P'=free_10*free_11, [ A>=1+B ], cost: 1 22: f34 -> f44 : D'=free_16, O'=free_17, P'=free_14*free_15, [ B>=1+A ], cost: 1 20: f34 -> f41 : A'=-1+A, B'=A, D'=free_9, N'=A, [ A==B ], cost: 1 18: f31 -> f23 : B'=-1+B, [ 0>=1+M ], cost: 1 19: f31 -> f23 : B'=-1+B, [ M>=1 ], cost: 1 17: f31 -> f34 : [], cost: 1 65: f41 -> f18 : [ C>=31 && A>=2+B ], cost: 1 66: f41 -> f18 : [ 1+B>=A ], cost: 1 64: f41 -> f23 : [ 30>=C && A>=2+B ], cost: 1 25: f61 -> f41 : A'=-2+A, V'=0, A1'=0, [ V==0 ], cost: 1 26: f61 -> f41 : A'=-2+A, A1'=0, [ 0>=1+V ], cost: 1 27: f61 -> f41 : A'=-2+A, A1'=0, [ V>=1 ], cost: 1 80: f80 -> [27] : H'=1+A, [ A>=H ], cost: 1-H+A 35: f93 -> f119 : E'=free_33+free_27+free_37, R'=free_32, S'=free_26, V'=free_28, D1'=free_30, E1'=free_33, F1'=free_37, G1'=free_27, H1'=free_36, Q1'=free_39, J1'=free_29, K1'=free_36*free_39+free_36*free_29, L1'=free_34, M1'=free_38, N1'=free_31, O1'=free_35, P1'=free_34*free_35+free_34*free_38+free_34*free_31, [ B>=1+C1 && C1>=B && free_51>=free_30 && free_30>=free_46 && O*D+free_28^2>=O*free_28+free_50*free_45+free_28*D+P && O*free_28+free_50*free_45+free_28*D+P+free_50>=1+O*D+free_28^2 && free_44>=free_32 && O*D+free_28^2>=O*free_28+free_28*D+free_49*free_45+P && O*free_28+free_28*D+free_49+free_49*free_45+P>=1+O*D+free_28^2 && free_32>=free_40 && free_48>=free_26 && free_26>=free_42 && free_48*free_33+O+free_48*free_27-free_28+free_48*free_37+D<=-1+free_48+free_48*free_33+O+free_48*free_27-free_28+free_48*free_37+D && free_33*free_42+free_27*free_42+O-free_28+D+free_37*free_42<=-1+free_48+free_48*free_33+O+free_48*free_27-free_28+free_48*free_37+D && free_48*free_33+O+free_48*free_27-free_28+free_48*free_37+D<=-1+free_33*free_42+free_27*free_42+O-free_28+D+free_37*free_42+free_42 && free_33*free_42+free_27*free_42+O-free_28+D+free_37*free_42<=-1+free_33*free_42+free_27*free_42+O-free_28+D+free_37*free_42+free_42 && free_37*free_44-free_50+free_33*free_44+free_27*free_44<=-1+free_37*free_44+free_44-free_50+free_33*free_44+free_27*free_44 && free_33*free_40-free_49+free_27*free_40+free_40*free_37<=-1+free_37*free_44+free_44-free_50+free_33*free_44+free_27*free_44 && free_37*free_44-free_50+free_33*free_44+free_27*free_44<=-1+free_40+free_33*free_40-free_49+free_27*free_40+free_40*free_37 && free_33*free_40-free_49+free_27*free_40+free_40*free_37<=-1+free_40+free_33*free_40-free_49+free_27*free_40+free_40*free_37 && free_51*free_27+free_51*free_33+free_51*free_37<=-1+free_51*free_27+free_51+free_51*free_33+free_51*free_37 && free_27*free_46+free_33*free_46+free_37*free_46<=-1+free_51*free_27+free_51+free_51*free_33+free_51*free_37 && free_51*free_27+free_51*free_33+free_51*free_37<=-1+free_27*free_46+free_33*free_46+free_46+free_37*free_46 && free_27*free_46+free_33*free_46+free_37*free_46<=-1+free_27*free_46+free_33*free_46+free_46+free_37*free_46 ], cost: 1 36: f93 -> f119 : E'=free_59+free_53+free_63, R'=free_58, S'=free_52, V'=free_54, D1'=free_56, E1'=free_59, F1'=free_63, G1'=free_53, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 ], cost: 1 72: f93 -> f124 : [ B>=1+C1 ], cost: 1 73: f93 -> f124 : E'=free_207+free_211+free_212, R'=free_210, S'=free_206, V'=free_208, C1'=B, D1'=free_209, E1'=free_211, F1'=free_212, G1'=free_207, [ free_223>=free_212*free_219+free_211*free_219+free_207*free_219 && free_212*free_219+free_211*free_219+free_207*free_219+free_219>=1+free_223 && free_219>=free_209 && free_223>=free_212*free_213+free_207*free_213+free_211*free_213 && free_212*free_213+free_207*free_213+free_211*free_213+free_213>=1+free_223 && free_209>=free_213 && free_208^2+O*D>=O*free_208+free_208*D+P+free_222*free_216 && O*free_208+free_208*D+P+free_216+free_222*free_216>=1+free_208^2+O*D && free_218+free_216>=free_214*free_212+free_207*free_214+free_214*free_211 && free_214*free_212+free_214+free_207*free_214+free_214*free_211>=1+free_218+free_216 && free_214>=free_210 && free_208^2+O*D>=O*free_208+free_224*free_222+free_208*D+P && O*free_208+free_224*free_222+free_208*D+free_224+P>=1+free_208^2+O*D && free_224+free_218>=free_207*free_220+free_220*free_211+free_220*free_212 && free_220+free_207*free_220+free_220*free_211+free_220*free_212>=1+free_224+free_218 && free_210>=free_220 && free_208+free_221>=free_217*free_211+free_207*free_217+O+free_217*free_212+D && free_217*free_211+free_217+free_207*free_217+O+free_217*free_212+D>=1+free_208+free_221 && free_217>=free_206 && free_208+free_221>=free_211*free_215+free_207*free_215+free_215*free_212+O+D && free_211*free_215+free_207*free_215+free_215*free_212+O+free_215+D>=1+free_208+free_221 && free_206>=free_215 && B==C1 ], cost: 1 37: f119 -> f93 : C1'=-1+C1, [ 0>=1+K1 ], cost: 1 38: f119 -> f93 : C1'=-1+C1, [ K1>=1 ], cost: 1 74: f119 -> f124 : [], cost: 1 81: f124 -> [28] : H'=3+C1, [ A>=2+C1 && H==2+C1 ], cost: 3-H+C1 82: f124 -> [28] : H'=1+H, [ 1+C1>=H && A>=H ], cost: 1 83: f124 -> [28] : H'=1+A, [ H>=3+C1 && A>=H ], cost: 1-H+A 84: f124 -> [28] : [], cost: 0 42: f132 -> f148 : Q1_1'=C1, [ A>=1+Q1_1 && C1==Q1_1 ], cost: 1 70: f132 -> f41 : [ Q1_1>=A ], cost: 1 43: f132 -> f138 : R'=free_78, S'=free_79, D1'=0, [ C1>=1+Q1_1 && A>=1+Q1_1 ], cost: 1 44: f132 -> f138 : R'=free_80, S'=free_81, D1'=0, [ Q1_1>=1+C1 && A>=1+Q1_1 ], cost: 1 45: f138 -> f144 : D'=free_84+free_82+free_83, Q1_1'=-1+A, R1'=free_83, S1'=free_84, T1'=free_82, [ 1+Q1_1==A ], cost: 1 46: f138 -> f144 : D'=free_87+free_88+free_85, D1'=free_86, R1'=free_87, S1'=free_88, T1'=free_85, [ A>=2+Q1_1 ], cost: 1 47: f138 -> f144 : D'=free_91+free_92+free_89, D1'=free_90, R1'=free_91, S1'=free_92, T1'=free_89, [ Q1_1>=A ], cost: 1 85: f167 -> [29] : Q'=1+A, R'=free_191*S+free_190, Q1_1'=-1+A, [ A>=Q && 1+Q1_1==A ], cost: 1-Q+A 86: f167 -> [29] : Q'=1+A, R'=free_194*S+free_193+free_192*D1, [ A>=2+Q1_1 && A>=Q ], cost: 1-Q+A 87: f167 -> [29] : Q'=1+A, R'=free_195*D1+free_197*S+free_196, [ Q1_1>=A && A>=Q ], cost: 1-Q+A 88: f181 -> [30] : H'=1+Y1, R'=free_198*D+O*free_199, Q1_1'=-1+A, [ Y1>=H && 1+Q1_1==A ], cost: 1-H+Y1 89: f181 -> [30] : H'=1+Y1, R'=free_201*D+free_200*V+O*free_202, [ A>=2+Q1_1 && Y1>=H ], cost: 1-H+Y1 90: f181 -> [30] : H'=1+Y1, R'=V*free_203+free_204*D+O*free_205, [ Q1_1>=A && Y1>=H ], cost: 1-H+Y1 77: [26] -> f4 : H'=1+H, [ Q>=1+G ], cost: 1 75: [27] -> f93 : C'=1+C, D'=3*free_226, E'=4*free_226, J'=free_226, O'=3*free_226, P'=free_225, Z1'=4*free_226-free_227, A2'=free_227, [ H>=1+A ], cost: 1 71: [28] -> f132 : [ H>=1+A ], cost: 1 68: [29] -> f181 : Y1'=A, [ Q>=1+A && 2+Q1_1>=A ], cost: 1 69: [29] -> f181 : Y1'=3+Q1_1, [ Q>=1+A && A>=3+Q1_1 ], cost: 1 67: [30] -> f132 : Q1_1'=1+Q1_1, [ H>=1+Y1 ], cost: 1 Applied simple chaining: Start location: f2 0: f44 -> f73 : [ A>=2+B ], cost: 1 1: f44 -> f73 : [ B>=A ], cost: 1 28: f44 -> f41 : A'=-2+A, B'=-1+A, D'=Q_1+D, J'=free_24, R'=2*O-2*D, S'=4*O^2-8*O*D+4*D^2+P, T'=free_25, U'=free_24, V'=free_24, B1'=Q_1+2*O-D, [ 8*O*D>=1+4*O^2+4*D^2+P && 1+B==A ], cost: 1 23: f44 -> f61 : B'=-1+A, D'=Q_1+D, J'=2*O-2*D, R'=2*O-2*D, S'=4*O^2-8*O*D+4*D^2+P, T'=free_19, U'=free_20, V'=free_18+2*O-2*D, W'=free_18, X'=free_18, Y'=Q_1+free_18+2*O-D, [ 4*O^2+4*D^2+P>=8*O*D && 2*O>=2*D && 1+B==A ], cost: 1 24: f44 -> f61 : B'=-1+A, D'=Q_1+D, J'=2*O-2*D, R'=2*O-2*D, S'=4*O^2-8*O*D+4*D^2+P, T'=free_22, U'=free_23, V'=-free_21+2*O-2*D, X'=-free_21, Y'=Q_1-free_21+2*O-D, Z'=free_21, [ 4*O^2+4*D^2+P>=8*O*D && 2*D>=1+2*O && 1+B==A ], cost: 1 2: f73 -> f75 : [ 29>=C ], cost: 1 3: f73 -> f75 : [ C>=31 ], cost: 1 29: f73 -> f75 : C'=30, [ C==30 ], cost: 1 4: f75 -> f77 : [ 9>=C ], cost: 1 5: f75 -> f77 : [ C>=11 ], cost: 1 31: f75 -> f80 : C'=10, Q_1'=Q_1+D, [ C==10 ], cost: 1 30: f77 -> f80 : C'=20, Q_1'=Q_1+D, [ C==20 ], cost: 1 33: f77 -> f93 : C'=1+C, [ 19>=C ], cost: 1 34: f77 -> f93 : C'=1+C, [ C>=21 ], cost: 1 6: f144 -> f148 : D'=0, [ D==0 ], cost: 1 48: f144 -> f148 : R'=free_94, S'=free_95, D1'=free_93, [ D1>=D*free_99 && D*free_99+free_99>=1+D1 && free_99>=free_93 && D1>=free_96*D && free_96+free_96*D>=1+D1 && free_93>=free_96 && S>=free_97*D && free_97+free_97*D>=1+S && free_97>=free_95 && S>=free_98*D && free_98*D+free_98>=1+S && free_95>=free_98 && 0>=1+D && R>=free_100*D && free_100+free_100*D>=1+R && free_100>=free_94 && R>=free_101*D && free_101+free_101*D>=1+R && free_94>=free_101 ], cost: 1 49: f144 -> f148 : R'=free_103, S'=free_104, D1'=free_102, [ D1>=free_108*D && free_108*D+free_108>=1+D1 && free_108>=free_102 && D1>=free_105*D && free_105*D+free_105>=1+D1 && free_102>=free_105 && S>=free_106*D && free_106*D+free_106>=1+S && free_106>=free_104 && S>=free_107*D && free_107*D+free_107>=1+S && free_104>=free_107 && D>=1 && R>=free_109*D && free_109+free_109*D>=1+R && free_109>=free_103 && R>=free_110*D && free_110*D+free_110>=1+R && free_103>=free_110 ], cost: 1 50: f148 -> f152 : E'=free_111, U1'=free_112, V1'=free_111, [ R>=0 ], cost: 1 51: f148 -> f152 : E'=-free_113, W1'=free_114, X1'=free_113, [ 0>=1+R ], cost: 1 7: f152 -> f156 : [ 0>=1+E ], cost: 1 8: f152 -> f156 : [ E>=1 ], cost: 1 63: f152 -> f132 : E'=0, Q1_1'=1+Q1_1, [ E==0 ], cost: 1 52: f156 -> f167 : D'=free_118, O'=free_119, R'=E+R, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=B, [ D1>=E*free_120+R*free_120 && E*free_120+R*free_120+free_120>=1+D1 && free_120>=free_115 && D1>=E*free_122+R*free_122 && E*free_122+free_122+R*free_122>=1+D1 && free_115>=free_122 && D1>=E*free_126 && E*free_126+free_126>=1+D1 && free_126>=free_117 && D1>=E*free_128 && E*free_128+free_128>=1+D1 && free_117>=free_128 && S>=free_121*E+free_121*R && free_121+free_121*E+free_121*R>=1+S && free_121>=free_116 && S>=free_124*E+free_124*R && free_124+free_124*E+free_124*R>=1+S && free_116>=free_124 && E+R>=free_127*E && free_127+free_127*E>=1+E+R && free_127>=free_118 && E+R>=E*free_123 && free_123+E*free_123>=1+E+R && free_118>=free_123 && S>=E*free_125 && E*free_125+free_125>=1+S && free_125>=free_119 && S>=E*free_129 && free_129+E*free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 ], cost: 1 53: f156 -> f167 : D'=free_133, O'=free_134, R'=E+R, S'=free_131, V'=free_132, D1'=free_130, Q1_1'=C1, [ Q1_1>=1+B && D1>=R*free_135+E*free_135 && R*free_135+free_135+E*free_135>=1+D1 && free_135>=free_130 && D1>=free_137*R+free_137*E && free_137+free_137*R+free_137*E>=1+D1 && free_130>=free_137 && D1>=E*free_141 && E*free_141+free_141>=1+D1 && free_141>=free_132 && D1>=E*free_143 && E*free_143+free_143>=1+D1 && free_132>=free_143 && S>=E*free_136+R*free_136 && E*free_136+R*free_136+free_136>=1+S && free_136>=free_131 && S>=E*free_139+R*free_139 && E*free_139+R*free_139+free_139>=1+S && free_131>=free_139 && E+R>=E*free_142 && free_142+E*free_142>=1+E+R && free_142>=free_133 && E+R>=E*free_138 && E*free_138+free_138>=1+E+R && free_133>=free_138 && S>=free_140*E && free_140+free_140*E>=1+S && free_140>=free_134 && S>=E*free_144 && free_144+E*free_144>=1+S && free_134>=free_144 && C1==Q1_1 ], cost: 1 54: f156 -> f167 : D'=free_148, O'=free_149, R'=E+R, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, [ B>=1+Q1_1 && D1>=free_150*E+free_150*R && free_150+free_150*E+free_150*R>=1+D1 && free_150>=free_145 && D1>=R*free_152+E*free_152 && R*free_152+free_152+E*free_152>=1+D1 && free_145>=free_152 && D1>=E*free_156 && E*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=E*free_158 && free_158+E*free_158>=1+D1 && free_147>=free_158 && S>=E*free_151+R*free_151 && E*free_151+free_151+R*free_151>=1+S && free_151>=free_146 && S>=E*free_154+free_154*R && E*free_154+free_154+free_154*R>=1+S && free_146>=free_154 && E+R>=E*free_157 && free_157+E*free_157>=1+E+R && free_157>=free_148 && E+R>=E*free_153 && E*free_153+free_153>=1+E+R && free_148>=free_153 && S>=E*free_155 && free_155+E*free_155>=1+S && free_155>=free_149 && S>=E*free_159 && E*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 ], cost: 1 55: f156 -> f167 : D'=free_163, O'=free_164, R'=E+R, S'=free_161, V'=free_162, D1'=free_160, [ C1>=1+Q1_1 && D1>=E*free_165+R*free_165 && E*free_165+R*free_165+free_165>=1+D1 && free_165>=free_160 && D1>=E*free_167+R*free_167 && E*free_167+free_167+R*free_167>=1+D1 && free_160>=free_167 && D1>=E*free_171 && free_171+E*free_171>=1+D1 && free_171>=free_162 && D1>=E*free_173 && E*free_173+free_173>=1+D1 && free_162>=free_173 && S>=free_166*E+free_166*R && free_166+free_166*E+free_166*R>=1+S && free_166>=free_161 && S>=free_169*E+free_169*R && free_169*E+free_169+free_169*R>=1+S && free_161>=free_169 && E+R>=E*free_172 && E*free_172+free_172>=1+E+R && free_172>=free_163 && E+R>=E*free_168 && free_168+E*free_168>=1+E+R && free_163>=free_168 && S>=E*free_170 && E*free_170+free_170>=1+S && free_170>=free_164 && S>=E*free_174 && E*free_174+free_174>=1+S && free_164>=free_174 ], cost: 1 56: f156 -> f167 : D'=free_178, O'=free_179, R'=E+R, S'=free_176, V'=free_177, D1'=free_175, [ Q1_1>=1+C1 && D1>=E*free_180+R*free_180 && E*free_180+R*free_180+free_180>=1+D1 && free_180>=free_175 && D1>=E*free_182+R*free_182 && E*free_182+free_182+R*free_182>=1+D1 && free_175>=free_182 && D1>=E*free_186 && free_186+E*free_186>=1+D1 && free_186>=free_177 && D1>=E*free_188 && free_188+E*free_188>=1+D1 && free_177>=free_188 && S>=free_181*E+free_181*R && free_181+free_181*E+free_181*R>=1+S && free_181>=free_176 && S>=free_184*E+free_184*R && free_184+free_184*E+free_184*R>=1+S && free_176>=free_184 && E+R>=E*free_187 && E*free_187+free_187>=1+E+R && free_187>=free_178 && E+R>=E*free_183 && free_183+E*free_183>=1+E+R && free_178>=free_183 && S>=E*free_185 && E*free_185+free_185>=1+S && free_185>=free_179 && S>=E*free_189 && free_189+E*free_189>=1+S && free_179>=free_189 ], cost: 1 9: f2 -> f4 : F'=0, [], cost: 1 10: f4 -> f4 : F'=F-(-1+Q-G)*free, H'=1+H, Q'=1+G, J'=free, [ G>=H && G>=Q && 1+G>=1+G ], cost: 3-Q+G 78: f4 -> f18 : A'=G, Q_1'=0, [ H>=1+G ], cost: 1 12: f18 -> f23 : C'=0, [ A>=1 ], cost: 1 13: f23 -> f34 : [ 1>=B ], cost: 1 14: f23 -> f31 : E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 ], cost: 1 15: f23 -> f31 : E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 ], cost: 1 16: f23 -> f31 : E'=F, K'=-free_7, L'=free_7, M'=free_8, [ B>=2 ], cost: 1 21: f34 -> f44 : D'=free_12, O'=free_13, P'=free_10*free_11, [ A>=1+B ], cost: 1 22: f34 -> f44 : D'=free_16, O'=free_17, P'=free_14*free_15, [ B>=1+A ], cost: 1 20: f34 -> f41 : A'=-1+A, B'=A, D'=free_9, N'=A, [ A==B ], cost: 1 18: f31 -> f23 : B'=-1+B, [ 0>=1+M ], cost: 1 19: f31 -> f23 : B'=-1+B, [ M>=1 ], cost: 1 17: f31 -> f34 : [], cost: 1 65: f41 -> f18 : [ C>=31 && A>=2+B ], cost: 1 66: f41 -> f18 : [ 1+B>=A ], cost: 1 64: f41 -> f23 : [ 30>=C && A>=2+B ], cost: 1 25: f61 -> f41 : A'=-2+A, V'=0, A1'=0, [ V==0 ], cost: 1 26: f61 -> f41 : A'=-2+A, A1'=0, [ 0>=1+V ], cost: 1 27: f61 -> f41 : A'=-2+A, A1'=0, [ V>=1 ], cost: 1 80: f80 -> f93 : C'=1+C, D'=3*free_226, E'=4*free_226, H'=1+A, J'=free_226, O'=3*free_226, P'=free_225, Z1'=4*free_226-free_227, A2'=free_227, [ A>=H && 1+A>=1+A ], cost: 2-H+A 35: f93 -> f119 : E'=free_33+free_27+free_37, R'=free_32, S'=free_26, V'=free_28, D1'=free_30, E1'=free_33, F1'=free_37, G1'=free_27, H1'=free_36, Q1'=free_39, J1'=free_29, K1'=free_36*free_39+free_36*free_29, L1'=free_34, M1'=free_38, N1'=free_31, O1'=free_35, P1'=free_34*free_35+free_34*free_38+free_34*free_31, [ B>=1+C1 && C1>=B && free_51>=free_30 && free_30>=free_46 && O*D+free_28^2>=O*free_28+free_50*free_45+free_28*D+P && O*free_28+free_50*free_45+free_28*D+P+free_50>=1+O*D+free_28^2 && free_44>=free_32 && O*D+free_28^2>=O*free_28+free_28*D+free_49*free_45+P && O*free_28+free_28*D+free_49+free_49*free_45+P>=1+O*D+free_28^2 && free_32>=free_40 && free_48>=free_26 && free_26>=free_42 && free_48*free_33+O+free_48*free_27-free_28+free_48*free_37+D<=-1+free_48+free_48*free_33+O+free_48*free_27-free_28+free_48*free_37+D && free_33*free_42+free_27*free_42+O-free_28+D+free_37*free_42<=-1+free_48+free_48*free_33+O+free_48*free_27-free_28+free_48*free_37+D && free_48*free_33+O+free_48*free_27-free_28+free_48*free_37+D<=-1+free_33*free_42+free_27*free_42+O-free_28+D+free_37*free_42+free_42 && free_33*free_42+free_27*free_42+O-free_28+D+free_37*free_42<=-1+free_33*free_42+free_27*free_42+O-free_28+D+free_37*free_42+free_42 && free_37*free_44-free_50+free_33*free_44+free_27*free_44<=-1+free_37*free_44+free_44-free_50+free_33*free_44+free_27*free_44 && free_33*free_40-free_49+free_27*free_40+free_40*free_37<=-1+free_37*free_44+free_44-free_50+free_33*free_44+free_27*free_44 && free_37*free_44-free_50+free_33*free_44+free_27*free_44<=-1+free_40+free_33*free_40-free_49+free_27*free_40+free_40*free_37 && free_33*free_40-free_49+free_27*free_40+free_40*free_37<=-1+free_40+free_33*free_40-free_49+free_27*free_40+free_40*free_37 && free_51*free_27+free_51*free_33+free_51*free_37<=-1+free_51*free_27+free_51+free_51*free_33+free_51*free_37 && free_27*free_46+free_33*free_46+free_37*free_46<=-1+free_51*free_27+free_51+free_51*free_33+free_51*free_37 && free_51*free_27+free_51*free_33+free_51*free_37<=-1+free_27*free_46+free_33*free_46+free_46+free_37*free_46 && free_27*free_46+free_33*free_46+free_37*free_46<=-1+free_27*free_46+free_33*free_46+free_46+free_37*free_46 ], cost: 1 36: f93 -> f119 : E'=free_59+free_53+free_63, R'=free_58, S'=free_52, V'=free_54, D1'=free_56, E1'=free_59, F1'=free_63, G1'=free_53, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 ], cost: 1 72: f93 -> f124 : [ B>=1+C1 ], cost: 1 73: f93 -> f124 : E'=free_207+free_211+free_212, R'=free_210, S'=free_206, V'=free_208, C1'=B, D1'=free_209, E1'=free_211, F1'=free_212, G1'=free_207, [ free_223>=free_212*free_219+free_211*free_219+free_207*free_219 && free_212*free_219+free_211*free_219+free_207*free_219+free_219>=1+free_223 && free_219>=free_209 && free_223>=free_212*free_213+free_207*free_213+free_211*free_213 && free_212*free_213+free_207*free_213+free_211*free_213+free_213>=1+free_223 && free_209>=free_213 && free_208^2+O*D>=O*free_208+free_208*D+P+free_222*free_216 && O*free_208+free_208*D+P+free_216+free_222*free_216>=1+free_208^2+O*D && free_218+free_216>=free_214*free_212+free_207*free_214+free_214*free_211 && free_214*free_212+free_214+free_207*free_214+free_214*free_211>=1+free_218+free_216 && free_214>=free_210 && free_208^2+O*D>=O*free_208+free_224*free_222+free_208*D+P && O*free_208+free_224*free_222+free_208*D+free_224+P>=1+free_208^2+O*D && free_224+free_218>=free_207*free_220+free_220*free_211+free_220*free_212 && free_220+free_207*free_220+free_220*free_211+free_220*free_212>=1+free_224+free_218 && free_210>=free_220 && free_208+free_221>=free_217*free_211+free_207*free_217+O+free_217*free_212+D && free_217*free_211+free_217+free_207*free_217+O+free_217*free_212+D>=1+free_208+free_221 && free_217>=free_206 && free_208+free_221>=free_211*free_215+free_207*free_215+free_215*free_212+O+D && free_211*free_215+free_207*free_215+free_215*free_212+O+free_215+D>=1+free_208+free_221 && free_206>=free_215 && B==C1 ], cost: 1 37: f119 -> f93 : C1'=-1+C1, [ 0>=1+K1 ], cost: 1 38: f119 -> f93 : C1'=-1+C1, [ K1>=1 ], cost: 1 74: f119 -> f124 : [], cost: 1 81: f124 -> [28] : H'=3+C1, [ A>=2+C1 && H==2+C1 ], cost: 3-H+C1 82: f124 -> [28] : H'=1+H, [ 1+C1>=H && A>=H ], cost: 1 83: f124 -> [28] : H'=1+A, [ H>=3+C1 && A>=H ], cost: 1-H+A 84: f124 -> [28] : [], cost: 0 42: f132 -> f148 : Q1_1'=C1, [ A>=1+Q1_1 && C1==Q1_1 ], cost: 1 70: f132 -> f41 : [ Q1_1>=A ], cost: 1 43: f132 -> f138 : R'=free_78, S'=free_79, D1'=0, [ C1>=1+Q1_1 && A>=1+Q1_1 ], cost: 1 44: f132 -> f138 : R'=free_80, S'=free_81, D1'=0, [ Q1_1>=1+C1 && A>=1+Q1_1 ], cost: 1 45: f138 -> f144 : D'=free_84+free_82+free_83, Q1_1'=-1+A, R1'=free_83, S1'=free_84, T1'=free_82, [ 1+Q1_1==A ], cost: 1 46: f138 -> f144 : D'=free_87+free_88+free_85, D1'=free_86, R1'=free_87, S1'=free_88, T1'=free_85, [ A>=2+Q1_1 ], cost: 1 47: f138 -> f144 : D'=free_91+free_92+free_89, D1'=free_90, R1'=free_91, S1'=free_92, T1'=free_89, [ Q1_1>=A ], cost: 1 85: f167 -> [29] : Q'=1+A, R'=free_191*S+free_190, Q1_1'=-1+A, [ A>=Q && 1+Q1_1==A ], cost: 1-Q+A 86: f167 -> [29] : Q'=1+A, R'=free_194*S+free_193+free_192*D1, [ A>=2+Q1_1 && A>=Q ], cost: 1-Q+A 87: f167 -> [29] : Q'=1+A, R'=free_195*D1+free_197*S+free_196, [ Q1_1>=A && A>=Q ], cost: 1-Q+A 88: f181 -> [30] : H'=1+Y1, R'=free_198*D+O*free_199, Q1_1'=-1+A, [ Y1>=H && 1+Q1_1==A ], cost: 1-H+Y1 89: f181 -> [30] : H'=1+Y1, R'=free_201*D+free_200*V+O*free_202, [ A>=2+Q1_1 && Y1>=H ], cost: 1-H+Y1 90: f181 -> [30] : H'=1+Y1, R'=V*free_203+free_204*D+O*free_205, [ Q1_1>=A && Y1>=H ], cost: 1-H+Y1 71: [28] -> f132 : [ H>=1+A ], cost: 1 68: [29] -> f181 : Y1'=A, [ Q>=1+A && 2+Q1_1>=A ], cost: 1 69: [29] -> f181 : Y1'=3+Q1_1, [ Q>=1+A && A>=3+Q1_1 ], cost: 1 67: [30] -> f132 : Q1_1'=1+Q1_1, [ H>=1+Y1 ], cost: 1 Eliminating 1 self-loops for location f4 Removing the self-loops: 10. Adding an epsilon transition (to model nonexecution of the loops): 92. Removed all Self-loops using metering functions (where possible): Start location: f2 0: f44 -> f73 : [ A>=2+B ], cost: 1 1: f44 -> f73 : [ B>=A ], cost: 1 28: f44 -> f41 : A'=-2+A, B'=-1+A, D'=Q_1+D, J'=free_24, R'=2*O-2*D, S'=4*O^2-8*O*D+4*D^2+P, T'=free_25, U'=free_24, V'=free_24, B1'=Q_1+2*O-D, [ 8*O*D>=1+4*O^2+4*D^2+P && 1+B==A ], cost: 1 23: f44 -> f61 : B'=-1+A, D'=Q_1+D, J'=2*O-2*D, R'=2*O-2*D, S'=4*O^2-8*O*D+4*D^2+P, T'=free_19, U'=free_20, V'=free_18+2*O-2*D, W'=free_18, X'=free_18, Y'=Q_1+free_18+2*O-D, [ 4*O^2+4*D^2+P>=8*O*D && 2*O>=2*D && 1+B==A ], cost: 1 24: f44 -> f61 : B'=-1+A, D'=Q_1+D, J'=2*O-2*D, R'=2*O-2*D, S'=4*O^2-8*O*D+4*D^2+P, T'=free_22, U'=free_23, V'=-free_21+2*O-2*D, X'=-free_21, Y'=Q_1-free_21+2*O-D, Z'=free_21, [ 4*O^2+4*D^2+P>=8*O*D && 2*D>=1+2*O && 1+B==A ], cost: 1 2: f73 -> f75 : [ 29>=C ], cost: 1 3: f73 -> f75 : [ C>=31 ], cost: 1 29: f73 -> f75 : C'=30, [ C==30 ], cost: 1 4: f75 -> f77 : [ 9>=C ], cost: 1 5: f75 -> f77 : [ C>=11 ], cost: 1 31: f75 -> f80 : C'=10, Q_1'=Q_1+D, [ C==10 ], cost: 1 30: f77 -> f80 : C'=20, Q_1'=Q_1+D, [ C==20 ], cost: 1 33: f77 -> f93 : C'=1+C, [ 19>=C ], cost: 1 34: f77 -> f93 : C'=1+C, [ C>=21 ], cost: 1 6: f144 -> f148 : D'=0, [ D==0 ], cost: 1 48: f144 -> f148 : R'=free_94, S'=free_95, D1'=free_93, [ D1>=D*free_99 && D*free_99+free_99>=1+D1 && free_99>=free_93 && D1>=free_96*D && free_96+free_96*D>=1+D1 && free_93>=free_96 && S>=free_97*D && free_97+free_97*D>=1+S && free_97>=free_95 && S>=free_98*D && free_98*D+free_98>=1+S && free_95>=free_98 && 0>=1+D && R>=free_100*D && free_100+free_100*D>=1+R && free_100>=free_94 && R>=free_101*D && free_101+free_101*D>=1+R && free_94>=free_101 ], cost: 1 49: f144 -> f148 : R'=free_103, S'=free_104, D1'=free_102, [ D1>=free_108*D && free_108*D+free_108>=1+D1 && free_108>=free_102 && D1>=free_105*D && free_105*D+free_105>=1+D1 && free_102>=free_105 && S>=free_106*D && free_106*D+free_106>=1+S && free_106>=free_104 && S>=free_107*D && free_107*D+free_107>=1+S && free_104>=free_107 && D>=1 && R>=free_109*D && free_109+free_109*D>=1+R && free_109>=free_103 && R>=free_110*D && free_110*D+free_110>=1+R && free_103>=free_110 ], cost: 1 50: f148 -> f152 : E'=free_111, U1'=free_112, V1'=free_111, [ R>=0 ], cost: 1 51: f148 -> f152 : E'=-free_113, W1'=free_114, X1'=free_113, [ 0>=1+R ], cost: 1 7: f152 -> f156 : [ 0>=1+E ], cost: 1 8: f152 -> f156 : [ E>=1 ], cost: 1 63: f152 -> f132 : E'=0, Q1_1'=1+Q1_1, [ E==0 ], cost: 1 52: f156 -> f167 : D'=free_118, O'=free_119, R'=E+R, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=B, [ D1>=E*free_120+R*free_120 && E*free_120+R*free_120+free_120>=1+D1 && free_120>=free_115 && D1>=E*free_122+R*free_122 && E*free_122+free_122+R*free_122>=1+D1 && free_115>=free_122 && D1>=E*free_126 && E*free_126+free_126>=1+D1 && free_126>=free_117 && D1>=E*free_128 && E*free_128+free_128>=1+D1 && free_117>=free_128 && S>=free_121*E+free_121*R && free_121+free_121*E+free_121*R>=1+S && free_121>=free_116 && S>=free_124*E+free_124*R && free_124+free_124*E+free_124*R>=1+S && free_116>=free_124 && E+R>=free_127*E && free_127+free_127*E>=1+E+R && free_127>=free_118 && E+R>=E*free_123 && free_123+E*free_123>=1+E+R && free_118>=free_123 && S>=E*free_125 && E*free_125+free_125>=1+S && free_125>=free_119 && S>=E*free_129 && free_129+E*free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 ], cost: 1 53: f156 -> f167 : D'=free_133, O'=free_134, R'=E+R, S'=free_131, V'=free_132, D1'=free_130, Q1_1'=C1, [ Q1_1>=1+B && D1>=R*free_135+E*free_135 && R*free_135+free_135+E*free_135>=1+D1 && free_135>=free_130 && D1>=free_137*R+free_137*E && free_137+free_137*R+free_137*E>=1+D1 && free_130>=free_137 && D1>=E*free_141 && E*free_141+free_141>=1+D1 && free_141>=free_132 && D1>=E*free_143 && E*free_143+free_143>=1+D1 && free_132>=free_143 && S>=E*free_136+R*free_136 && E*free_136+R*free_136+free_136>=1+S && free_136>=free_131 && S>=E*free_139+R*free_139 && E*free_139+R*free_139+free_139>=1+S && free_131>=free_139 && E+R>=E*free_142 && free_142+E*free_142>=1+E+R && free_142>=free_133 && E+R>=E*free_138 && E*free_138+free_138>=1+E+R && free_133>=free_138 && S>=free_140*E && free_140+free_140*E>=1+S && free_140>=free_134 && S>=E*free_144 && free_144+E*free_144>=1+S && free_134>=free_144 && C1==Q1_1 ], cost: 1 54: f156 -> f167 : D'=free_148, O'=free_149, R'=E+R, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, [ B>=1+Q1_1 && D1>=free_150*E+free_150*R && free_150+free_150*E+free_150*R>=1+D1 && free_150>=free_145 && D1>=R*free_152+E*free_152 && R*free_152+free_152+E*free_152>=1+D1 && free_145>=free_152 && D1>=E*free_156 && E*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=E*free_158 && free_158+E*free_158>=1+D1 && free_147>=free_158 && S>=E*free_151+R*free_151 && E*free_151+free_151+R*free_151>=1+S && free_151>=free_146 && S>=E*free_154+free_154*R && E*free_154+free_154+free_154*R>=1+S && free_146>=free_154 && E+R>=E*free_157 && free_157+E*free_157>=1+E+R && free_157>=free_148 && E+R>=E*free_153 && E*free_153+free_153>=1+E+R && free_148>=free_153 && S>=E*free_155 && free_155+E*free_155>=1+S && free_155>=free_149 && S>=E*free_159 && E*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 ], cost: 1 55: f156 -> f167 : D'=free_163, O'=free_164, R'=E+R, S'=free_161, V'=free_162, D1'=free_160, [ C1>=1+Q1_1 && D1>=E*free_165+R*free_165 && E*free_165+R*free_165+free_165>=1+D1 && free_165>=free_160 && D1>=E*free_167+R*free_167 && E*free_167+free_167+R*free_167>=1+D1 && free_160>=free_167 && D1>=E*free_171 && free_171+E*free_171>=1+D1 && free_171>=free_162 && D1>=E*free_173 && E*free_173+free_173>=1+D1 && free_162>=free_173 && S>=free_166*E+free_166*R && free_166+free_166*E+free_166*R>=1+S && free_166>=free_161 && S>=free_169*E+free_169*R && free_169*E+free_169+free_169*R>=1+S && free_161>=free_169 && E+R>=E*free_172 && E*free_172+free_172>=1+E+R && free_172>=free_163 && E+R>=E*free_168 && free_168+E*free_168>=1+E+R && free_163>=free_168 && S>=E*free_170 && E*free_170+free_170>=1+S && free_170>=free_164 && S>=E*free_174 && E*free_174+free_174>=1+S && free_164>=free_174 ], cost: 1 56: f156 -> f167 : D'=free_178, O'=free_179, R'=E+R, S'=free_176, V'=free_177, D1'=free_175, [ Q1_1>=1+C1 && D1>=E*free_180+R*free_180 && E*free_180+R*free_180+free_180>=1+D1 && free_180>=free_175 && D1>=E*free_182+R*free_182 && E*free_182+free_182+R*free_182>=1+D1 && free_175>=free_182 && D1>=E*free_186 && free_186+E*free_186>=1+D1 && free_186>=free_177 && D1>=E*free_188 && free_188+E*free_188>=1+D1 && free_177>=free_188 && S>=free_181*E+free_181*R && free_181+free_181*E+free_181*R>=1+S && free_181>=free_176 && S>=free_184*E+free_184*R && free_184+free_184*E+free_184*R>=1+S && free_176>=free_184 && E+R>=E*free_187 && E*free_187+free_187>=1+E+R && free_187>=free_178 && E+R>=E*free_183 && free_183+E*free_183>=1+E+R && free_178>=free_183 && S>=E*free_185 && E*free_185+free_185>=1+S && free_185>=free_179 && S>=E*free_189 && free_189+E*free_189>=1+S && free_179>=free_189 ], cost: 1 9: f2 -> f4 : F'=0, [], cost: 1 91: f4 -> [31] : F'=F-(-1+Q-G)*free, H'=1+H, Q'=1+G, J'=free, [ G>=H && G>=Q ], cost: 3-Q+G 92: f4 -> [31] : [], cost: 0 12: f18 -> f23 : C'=0, [ A>=1 ], cost: 1 13: f23 -> f34 : [ 1>=B ], cost: 1 14: f23 -> f31 : E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 ], cost: 1 15: f23 -> f31 : E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 ], cost: 1 16: f23 -> f31 : E'=F, K'=-free_7, L'=free_7, M'=free_8, [ B>=2 ], cost: 1 21: f34 -> f44 : D'=free_12, O'=free_13, P'=free_10*free_11, [ A>=1+B ], cost: 1 22: f34 -> f44 : D'=free_16, O'=free_17, P'=free_14*free_15, [ B>=1+A ], cost: 1 20: f34 -> f41 : A'=-1+A, B'=A, D'=free_9, N'=A, [ A==B ], cost: 1 18: f31 -> f23 : B'=-1+B, [ 0>=1+M ], cost: 1 19: f31 -> f23 : B'=-1+B, [ M>=1 ], cost: 1 17: f31 -> f34 : [], cost: 1 65: f41 -> f18 : [ C>=31 && A>=2+B ], cost: 1 66: f41 -> f18 : [ 1+B>=A ], cost: 1 64: f41 -> f23 : [ 30>=C && A>=2+B ], cost: 1 25: f61 -> f41 : A'=-2+A, V'=0, A1'=0, [ V==0 ], cost: 1 26: f61 -> f41 : A'=-2+A, A1'=0, [ 0>=1+V ], cost: 1 27: f61 -> f41 : A'=-2+A, A1'=0, [ V>=1 ], cost: 1 80: f80 -> f93 : C'=1+C, D'=3*free_226, E'=4*free_226, H'=1+A, J'=free_226, O'=3*free_226, P'=free_225, Z1'=4*free_226-free_227, A2'=free_227, [ A>=H && 1+A>=1+A ], cost: 2-H+A 35: f93 -> f119 : E'=free_33+free_27+free_37, R'=free_32, S'=free_26, V'=free_28, D1'=free_30, E1'=free_33, F1'=free_37, G1'=free_27, H1'=free_36, Q1'=free_39, J1'=free_29, K1'=free_36*free_39+free_36*free_29, L1'=free_34, M1'=free_38, N1'=free_31, O1'=free_35, P1'=free_34*free_35+free_34*free_38+free_34*free_31, [ B>=1+C1 && C1>=B && free_51>=free_30 && free_30>=free_46 && O*D+free_28^2>=O*free_28+free_50*free_45+free_28*D+P && O*free_28+free_50*free_45+free_28*D+P+free_50>=1+O*D+free_28^2 && free_44>=free_32 && O*D+free_28^2>=O*free_28+free_28*D+free_49*free_45+P && O*free_28+free_28*D+free_49+free_49*free_45+P>=1+O*D+free_28^2 && free_32>=free_40 && free_48>=free_26 && free_26>=free_42 && free_48*free_33+O+free_48*free_27-free_28+free_48*free_37+D<=-1+free_48+free_48*free_33+O+free_48*free_27-free_28+free_48*free_37+D && free_33*free_42+free_27*free_42+O-free_28+D+free_37*free_42<=-1+free_48+free_48*free_33+O+free_48*free_27-free_28+free_48*free_37+D && free_48*free_33+O+free_48*free_27-free_28+free_48*free_37+D<=-1+free_33*free_42+free_27*free_42+O-free_28+D+free_37*free_42+free_42 && free_33*free_42+free_27*free_42+O-free_28+D+free_37*free_42<=-1+free_33*free_42+free_27*free_42+O-free_28+D+free_37*free_42+free_42 && free_37*free_44-free_50+free_33*free_44+free_27*free_44<=-1+free_37*free_44+free_44-free_50+free_33*free_44+free_27*free_44 && free_33*free_40-free_49+free_27*free_40+free_40*free_37<=-1+free_37*free_44+free_44-free_50+free_33*free_44+free_27*free_44 && free_37*free_44-free_50+free_33*free_44+free_27*free_44<=-1+free_40+free_33*free_40-free_49+free_27*free_40+free_40*free_37 && free_33*free_40-free_49+free_27*free_40+free_40*free_37<=-1+free_40+free_33*free_40-free_49+free_27*free_40+free_40*free_37 && free_51*free_27+free_51*free_33+free_51*free_37<=-1+free_51*free_27+free_51+free_51*free_33+free_51*free_37 && free_27*free_46+free_33*free_46+free_37*free_46<=-1+free_51*free_27+free_51+free_51*free_33+free_51*free_37 && free_51*free_27+free_51*free_33+free_51*free_37<=-1+free_27*free_46+free_33*free_46+free_46+free_37*free_46 && free_27*free_46+free_33*free_46+free_37*free_46<=-1+free_27*free_46+free_33*free_46+free_46+free_37*free_46 ], cost: 1 36: f93 -> f119 : E'=free_59+free_53+free_63, R'=free_58, S'=free_52, V'=free_54, D1'=free_56, E1'=free_59, F1'=free_63, G1'=free_53, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 ], cost: 1 72: f93 -> f124 : [ B>=1+C1 ], cost: 1 73: f93 -> f124 : E'=free_207+free_211+free_212, R'=free_210, S'=free_206, V'=free_208, C1'=B, D1'=free_209, E1'=free_211, F1'=free_212, G1'=free_207, [ free_223>=free_212*free_219+free_211*free_219+free_207*free_219 && free_212*free_219+free_211*free_219+free_207*free_219+free_219>=1+free_223 && free_219>=free_209 && free_223>=free_212*free_213+free_207*free_213+free_211*free_213 && free_212*free_213+free_207*free_213+free_211*free_213+free_213>=1+free_223 && free_209>=free_213 && free_208^2+O*D>=O*free_208+free_208*D+P+free_222*free_216 && O*free_208+free_208*D+P+free_216+free_222*free_216>=1+free_208^2+O*D && free_218+free_216>=free_214*free_212+free_207*free_214+free_214*free_211 && free_214*free_212+free_214+free_207*free_214+free_214*free_211>=1+free_218+free_216 && free_214>=free_210 && free_208^2+O*D>=O*free_208+free_224*free_222+free_208*D+P && O*free_208+free_224*free_222+free_208*D+free_224+P>=1+free_208^2+O*D && free_224+free_218>=free_207*free_220+free_220*free_211+free_220*free_212 && free_220+free_207*free_220+free_220*free_211+free_220*free_212>=1+free_224+free_218 && free_210>=free_220 && free_208+free_221>=free_217*free_211+free_207*free_217+O+free_217*free_212+D && free_217*free_211+free_217+free_207*free_217+O+free_217*free_212+D>=1+free_208+free_221 && free_217>=free_206 && free_208+free_221>=free_211*free_215+free_207*free_215+free_215*free_212+O+D && free_211*free_215+free_207*free_215+free_215*free_212+O+free_215+D>=1+free_208+free_221 && free_206>=free_215 && B==C1 ], cost: 1 37: f119 -> f93 : C1'=-1+C1, [ 0>=1+K1 ], cost: 1 38: f119 -> f93 : C1'=-1+C1, [ K1>=1 ], cost: 1 74: f119 -> f124 : [], cost: 1 81: f124 -> [28] : H'=3+C1, [ A>=2+C1 && H==2+C1 ], cost: 3-H+C1 82: f124 -> [28] : H'=1+H, [ 1+C1>=H && A>=H ], cost: 1 83: f124 -> [28] : H'=1+A, [ H>=3+C1 && A>=H ], cost: 1-H+A 84: f124 -> [28] : [], cost: 0 42: f132 -> f148 : Q1_1'=C1, [ A>=1+Q1_1 && C1==Q1_1 ], cost: 1 70: f132 -> f41 : [ Q1_1>=A ], cost: 1 43: f132 -> f138 : R'=free_78, S'=free_79, D1'=0, [ C1>=1+Q1_1 && A>=1+Q1_1 ], cost: 1 44: f132 -> f138 : R'=free_80, S'=free_81, D1'=0, [ Q1_1>=1+C1 && A>=1+Q1_1 ], cost: 1 45: f138 -> f144 : D'=free_84+free_82+free_83, Q1_1'=-1+A, R1'=free_83, S1'=free_84, T1'=free_82, [ 1+Q1_1==A ], cost: 1 46: f138 -> f144 : D'=free_87+free_88+free_85, D1'=free_86, R1'=free_87, S1'=free_88, T1'=free_85, [ A>=2+Q1_1 ], cost: 1 47: f138 -> f144 : D'=free_91+free_92+free_89, D1'=free_90, R1'=free_91, S1'=free_92, T1'=free_89, [ Q1_1>=A ], cost: 1 85: f167 -> [29] : Q'=1+A, R'=free_191*S+free_190, Q1_1'=-1+A, [ A>=Q && 1+Q1_1==A ], cost: 1-Q+A 86: f167 -> [29] : Q'=1+A, R'=free_194*S+free_193+free_192*D1, [ A>=2+Q1_1 && A>=Q ], cost: 1-Q+A 87: f167 -> [29] : Q'=1+A, R'=free_195*D1+free_197*S+free_196, [ Q1_1>=A && A>=Q ], cost: 1-Q+A 88: f181 -> [30] : H'=1+Y1, R'=free_198*D+O*free_199, Q1_1'=-1+A, [ Y1>=H && 1+Q1_1==A ], cost: 1-H+Y1 89: f181 -> [30] : H'=1+Y1, R'=free_201*D+free_200*V+O*free_202, [ A>=2+Q1_1 && Y1>=H ], cost: 1-H+Y1 90: f181 -> [30] : H'=1+Y1, R'=V*free_203+free_204*D+O*free_205, [ Q1_1>=A && Y1>=H ], cost: 1-H+Y1 71: [28] -> f132 : [ H>=1+A ], cost: 1 68: [29] -> f181 : Y1'=A, [ Q>=1+A && 2+Q1_1>=A ], cost: 1 69: [29] -> f181 : Y1'=3+Q1_1, [ Q>=1+A && A>=3+Q1_1 ], cost: 1 67: [30] -> f132 : Q1_1'=1+Q1_1, [ H>=1+Y1 ], cost: 1 78: [31] -> f18 : A'=G, Q_1'=0, [ H>=1+G ], cost: 1 Applied chaining over branches and pruning: Start location: f2 109: f73 -> f77 : [ 29>=C && 9>=C ], cost: 2 110: f73 -> f77 : [ 29>=C && C>=11 ], cost: 2 112: f73 -> f77 : [ C>=31 && C>=11 ], cost: 2 113: f73 -> f77 : C'=30, [ C==30 && 30>=11 ], cost: 2 111: f73 -> f80 : C'=10, Q_1'=Q_1+D, [ 29>=C && C==10 ], cost: 2 30: f77 -> f80 : C'=20, Q_1'=Q_1+D, [ C==20 ], cost: 1 33: f77 -> f93 : C'=1+C, [ 19>=C ], cost: 1 34: f77 -> f93 : C'=1+C, [ C>=21 ], cost: 1 6: f144 -> f148 : D'=0, [ D==0 ], cost: 1 48: f144 -> f148 : R'=free_94, S'=free_95, D1'=free_93, [ D1>=D*free_99 && D*free_99+free_99>=1+D1 && free_99>=free_93 && D1>=free_96*D && free_96+free_96*D>=1+D1 && free_93>=free_96 && S>=free_97*D && free_97+free_97*D>=1+S && free_97>=free_95 && S>=free_98*D && free_98*D+free_98>=1+S && free_95>=free_98 && 0>=1+D && R>=free_100*D && free_100+free_100*D>=1+R && free_100>=free_94 && R>=free_101*D && free_101+free_101*D>=1+R && free_94>=free_101 ], cost: 1 49: f144 -> f148 : R'=free_103, S'=free_104, D1'=free_102, [ D1>=free_108*D && free_108*D+free_108>=1+D1 && free_108>=free_102 && D1>=free_105*D && free_105*D+free_105>=1+D1 && free_102>=free_105 && S>=free_106*D && free_106*D+free_106>=1+S && free_106>=free_104 && S>=free_107*D && free_107*D+free_107>=1+S && free_104>=free_107 && D>=1 && R>=free_109*D && free_109+free_109*D>=1+R && free_109>=free_103 && R>=free_110*D && free_110*D+free_110>=1+R && free_103>=free_110 ], cost: 1 125: f148 -> f156 : E'=free_111, U1'=free_112, V1'=free_111, [ R>=0 && 0>=1+free_111 ], cost: 2 126: f148 -> f156 : E'=free_111, U1'=free_112, V1'=free_111, [ R>=0 && free_111>=1 ], cost: 2 128: f148 -> f156 : E'=-free_113, W1'=free_114, X1'=free_113, [ 0>=1+R && 0>=1-free_113 ], cost: 2 129: f148 -> f156 : E'=-free_113, W1'=free_114, X1'=free_113, [ 0>=1+R && -free_113>=1 ], cost: 2 127: f148 -> f132 : E'=0, Q1_1'=1+Q1_1, U1'=free_112, V1'=free_111, [ R>=0 && free_111==0 ], cost: 2 130: f148 -> f132 : E'=0, Q1_1'=1+Q1_1, W1'=free_114, X1'=free_113, [ 0>=1+R && -free_113==0 ], cost: 2 131: f156 -> [29] : D'=free_118, Q'=1+A, O'=free_119, R'=free_191*free_116+free_190, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=-1+A, [ D1>=E*free_120+R*free_120 && E*free_120+R*free_120+free_120>=1+D1 && free_120>=free_115 && D1>=E*free_122+R*free_122 && E*free_122+free_122+R*free_122>=1+D1 && free_115>=free_122 && D1>=E*free_126 && E*free_126+free_126>=1+D1 && free_126>=free_117 && D1>=E*free_128 && E*free_128+free_128>=1+D1 && free_117>=free_128 && S>=free_121*E+free_121*R && free_121+free_121*E+free_121*R>=1+S && free_121>=free_116 && S>=free_124*E+free_124*R && free_124+free_124*E+free_124*R>=1+S && free_116>=free_124 && E+R>=free_127*E && free_127+free_127*E>=1+E+R && free_127>=free_118 && E+R>=E*free_123 && free_123+E*free_123>=1+E+R && free_118>=free_123 && S>=E*free_125 && E*free_125+free_125>=1+S && free_125>=free_119 && S>=E*free_129 && free_129+E*free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=Q && 1+B==A ], cost: 2-Q+A 132: f156 -> [29] : D'=free_118, Q'=1+A, O'=free_119, R'=free_194*free_116+free_115*free_192+free_193, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=B, [ D1>=E*free_120+R*free_120 && E*free_120+R*free_120+free_120>=1+D1 && free_120>=free_115 && D1>=E*free_122+R*free_122 && E*free_122+free_122+R*free_122>=1+D1 && free_115>=free_122 && D1>=E*free_126 && E*free_126+free_126>=1+D1 && free_126>=free_117 && D1>=E*free_128 && E*free_128+free_128>=1+D1 && free_117>=free_128 && S>=free_121*E+free_121*R && free_121+free_121*E+free_121*R>=1+S && free_121>=free_116 && S>=free_124*E+free_124*R && free_124+free_124*E+free_124*R>=1+S && free_116>=free_124 && E+R>=free_127*E && free_127+free_127*E>=1+E+R && free_127>=free_118 && E+R>=E*free_123 && free_123+E*free_123>=1+E+R && free_118>=free_123 && S>=E*free_125 && E*free_125+free_125>=1+S && free_125>=free_119 && S>=E*free_129 && free_129+E*free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=2+B && A>=Q ], cost: 2-Q+A 134: f156 -> [29] : D'=free_133, Q'=1+A, O'=free_134, R'=free_190+free_191*free_131, S'=free_131, V'=free_132, D1'=free_130, Q1_1'=-1+A, [ Q1_1>=1+B && D1>=R*free_135+E*free_135 && R*free_135+free_135+E*free_135>=1+D1 && free_135>=free_130 && D1>=free_137*R+free_137*E && free_137+free_137*R+free_137*E>=1+D1 && free_130>=free_137 && D1>=E*free_141 && E*free_141+free_141>=1+D1 && free_141>=free_132 && D1>=E*free_143 && E*free_143+free_143>=1+D1 && free_132>=free_143 && S>=E*free_136+R*free_136 && E*free_136+R*free_136+free_136>=1+S && free_136>=free_131 && S>=E*free_139+R*free_139 && E*free_139+R*free_139+free_139>=1+S && free_131>=free_139 && E+R>=E*free_142 && free_142+E*free_142>=1+E+R && free_142>=free_133 && E+R>=E*free_138 && E*free_138+free_138>=1+E+R && free_133>=free_138 && S>=free_140*E && free_140+free_140*E>=1+S && free_140>=free_134 && S>=E*free_144 && free_144+E*free_144>=1+S && free_134>=free_144 && C1==Q1_1 && A>=Q && 1+C1==A ], cost: 2-Q+A 138: f156 -> [29] : D'=free_148, Q'=1+A, O'=free_149, R'=free_194*free_146+free_145*free_192+free_193, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, [ B>=1+Q1_1 && D1>=free_150*E+free_150*R && free_150+free_150*E+free_150*R>=1+D1 && free_150>=free_145 && D1>=R*free_152+E*free_152 && R*free_152+free_152+E*free_152>=1+D1 && free_145>=free_152 && D1>=E*free_156 && E*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=E*free_158 && free_158+E*free_158>=1+D1 && free_147>=free_158 && S>=E*free_151+R*free_151 && E*free_151+free_151+R*free_151>=1+S && free_151>=free_146 && S>=E*free_154+free_154*R && E*free_154+free_154+free_154*R>=1+S && free_146>=free_154 && E+R>=E*free_157 && free_157+E*free_157>=1+E+R && free_157>=free_148 && E+R>=E*free_153 && E*free_153+free_153>=1+E+R && free_148>=free_153 && S>=E*free_155 && free_155+E*free_155>=1+S && free_155>=free_149 && S>=E*free_159 && E*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && A>=2+C1 && A>=Q ], cost: 2-Q+A 139: f156 -> [29] : D'=free_148, Q'=1+A, O'=free_149, R'=free_145*free_195+free_197*free_146+free_196, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, [ B>=1+Q1_1 && D1>=free_150*E+free_150*R && free_150+free_150*E+free_150*R>=1+D1 && free_150>=free_145 && D1>=R*free_152+E*free_152 && R*free_152+free_152+E*free_152>=1+D1 && free_145>=free_152 && D1>=E*free_156 && E*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=E*free_158 && free_158+E*free_158>=1+D1 && free_147>=free_158 && S>=E*free_151+R*free_151 && E*free_151+free_151+R*free_151>=1+S && free_151>=free_146 && S>=E*free_154+free_154*R && E*free_154+free_154+free_154*R>=1+S && free_146>=free_154 && E+R>=E*free_157 && free_157+E*free_157>=1+E+R && free_157>=free_148 && E+R>=E*free_153 && E*free_153+free_153>=1+E+R && free_148>=free_153 && S>=E*free_155 && free_155+E*free_155>=1+S && free_155>=free_149 && S>=E*free_159 && E*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && C1>=A && A>=Q ], cost: 2-Q+A 93: f2 -> [31] : F'=-(-1+Q-G)*free, H'=1+H, Q'=1+G, J'=free, [ G>=H && G>=Q ], cost: 4-Q+G 94: f2 -> [31] : F'=0, [], cost: 1 12: f18 -> f23 : C'=0, [ A>=1 ], cost: 1 95: f23 -> f23 : B'=-1+B, E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 && 0>=1+free_1 ], cost: 2 96: f23 -> f23 : B'=-1+B, E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 && free_1>=1 ], cost: 2 98: f23 -> f23 : B'=-1+B, E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 && 0>=1+free_4 ], cost: 2 99: f23 -> f23 : B'=-1+B, E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 && free_4>=1 ], cost: 2 102: f23 -> f23 : B'=-1+B, E'=F, K'=-free_7, L'=free_7, M'=free_8, [ B>=2 && free_8>=1 ], cost: 2 13: f23 -> f34 : [ 1>=B ], cost: 1 97: f23 -> f34 : E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 ], cost: 2 100: f23 -> f34 : E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 ], cost: 2 103: f23 -> f34 : E'=F, K'=-free_7, L'=free_7, M'=free_8, [ B>=2 ], cost: 2 104: f34 -> f73 : D'=free_12, O'=free_13, P'=free_10*free_11, [ A>=1+B && A>=2+B ], cost: 2 108: f34 -> f73 : D'=free_16, O'=free_17, P'=free_14*free_15, [ B>=1+A && B>=A ], cost: 2 20: f34 -> f41 : A'=-1+A, B'=A, D'=free_9, N'=A, [ A==B ], cost: 1 105: f34 -> f41 : A'=-2+A, B'=-1+A, D'=Q_1+free_12, J'=free_24, O'=free_13, P'=free_10*free_11, R'=-2*free_12+2*free_13, S'=-8*free_12*free_13+4*free_13^2+4*free_12^2+free_10*free_11, T'=free_25, U'=free_24, V'=free_24, B1'=Q_1-free_12+2*free_13, [ A>=1+B && 8*free_12*free_13>=1+4*free_13^2+4*free_12^2+free_10*free_11 && 1+B==A ], cost: 2 106: f34 -> f61 : B'=-1+A, D'=Q_1+free_12, J'=-2*free_12+2*free_13, O'=free_13, P'=free_10*free_11, R'=-2*free_12+2*free_13, S'=-8*free_12*free_13+4*free_13^2+4*free_12^2+free_10*free_11, T'=free_19, U'=free_20, V'=free_18-2*free_12+2*free_13, W'=free_18, X'=free_18, Y'=Q_1+free_18-free_12+2*free_13, [ A>=1+B && 4*free_13^2+4*free_12^2+free_10*free_11>=8*free_12*free_13 && 2*free_13>=2*free_12 && 1+B==A ], cost: 2 107: f34 -> f61 : B'=-1+A, D'=Q_1+free_12, J'=-2*free_12+2*free_13, O'=free_13, P'=free_10*free_11, R'=-2*free_12+2*free_13, S'=-8*free_12*free_13+4*free_13^2+4*free_12^2+free_10*free_11, T'=free_22, U'=free_23, V'=-free_21-2*free_12+2*free_13, X'=-free_21, Y'=Q_1-free_21-free_12+2*free_13, Z'=free_21, [ A>=1+B && 4*free_13^2+4*free_12^2+free_10*free_11>=8*free_12*free_13 && 2*free_12>=1+2*free_13 && 1+B==A ], cost: 2 65: f41 -> f18 : [ C>=31 && A>=2+B ], cost: 1 66: f41 -> f18 : [ 1+B>=A ], cost: 1 64: f41 -> f23 : [ 30>=C && A>=2+B ], cost: 1 25: f61 -> f41 : A'=-2+A, V'=0, A1'=0, [ V==0 ], cost: 1 26: f61 -> f41 : A'=-2+A, A1'=0, [ 0>=1+V ], cost: 1 27: f61 -> f41 : A'=-2+A, A1'=0, [ V>=1 ], cost: 1 80: f80 -> f93 : C'=1+C, D'=3*free_226, E'=4*free_226, H'=1+A, J'=free_226, O'=3*free_226, P'=free_225, Z1'=4*free_226-free_227, A2'=free_227, [ A>=H && 1+A>=1+A ], cost: 2-H+A 114: f93 -> f93 : E'=free_59+free_53+free_63, R'=free_58, S'=free_52, V'=free_54, C1'=-1+C1, D1'=free_56, E1'=free_59, F1'=free_63, G1'=free_53, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && 0>=1+free_55*free_62+free_65*free_62 ], cost: 2 115: f93 -> f93 : E'=free_59+free_53+free_63, R'=free_58, S'=free_52, V'=free_54, C1'=-1+C1, D1'=free_56, E1'=free_59, F1'=free_63, G1'=free_53, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_55*free_62+free_65*free_62>=1 ], cost: 2 72: f93 -> f124 : [ B>=1+C1 ], cost: 1 73: f93 -> f124 : E'=free_207+free_211+free_212, R'=free_210, S'=free_206, V'=free_208, C1'=B, D1'=free_209, E1'=free_211, F1'=free_212, G1'=free_207, [ free_223>=free_212*free_219+free_211*free_219+free_207*free_219 && free_212*free_219+free_211*free_219+free_207*free_219+free_219>=1+free_223 && free_219>=free_209 && free_223>=free_212*free_213+free_207*free_213+free_211*free_213 && free_212*free_213+free_207*free_213+free_211*free_213+free_213>=1+free_223 && free_209>=free_213 && free_208^2+O*D>=O*free_208+free_208*D+P+free_222*free_216 && O*free_208+free_208*D+P+free_216+free_222*free_216>=1+free_208^2+O*D && free_218+free_216>=free_214*free_212+free_207*free_214+free_214*free_211 && free_214*free_212+free_214+free_207*free_214+free_214*free_211>=1+free_218+free_216 && free_214>=free_210 && free_208^2+O*D>=O*free_208+free_224*free_222+free_208*D+P && O*free_208+free_224*free_222+free_208*D+free_224+P>=1+free_208^2+O*D && free_224+free_218>=free_207*free_220+free_220*free_211+free_220*free_212 && free_220+free_207*free_220+free_220*free_211+free_220*free_212>=1+free_224+free_218 && free_210>=free_220 && free_208+free_221>=free_217*free_211+free_207*free_217+O+free_217*free_212+D && free_217*free_211+free_217+free_207*free_217+O+free_217*free_212+D>=1+free_208+free_221 && free_217>=free_206 && free_208+free_221>=free_211*free_215+free_207*free_215+free_215*free_212+O+D && free_211*free_215+free_207*free_215+free_215*free_212+O+free_215+D>=1+free_208+free_221 && free_206>=free_215 && B==C1 ], cost: 1 116: f93 -> f124 : E'=free_59+free_53+free_63, R'=free_58, S'=free_52, V'=free_54, D1'=free_56, E1'=free_59, F1'=free_63, G1'=free_53, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 ], cost: 2 117: f124 -> f132 : H'=3+C1, [ A>=2+C1 && H==2+C1 && 3+C1>=1+A ], cost: 4-H+C1 118: f124 -> f132 : H'=1+H, [ 1+C1>=H && A>=H && 1+H>=1+A ], cost: 2 119: f124 -> f132 : H'=1+A, [ H>=3+C1 && A>=H && 1+A>=1+A ], cost: 2-H+A 120: f124 -> f132 : [ H>=1+A ], cost: 1 121: f132 -> f144 : D'=free_84+free_82+free_83, R'=free_78, S'=free_79, D1'=0, Q1_1'=-1+A, R1'=free_83, S1'=free_84, T1'=free_82, [ C1>=1+Q1_1 && A>=1+Q1_1 && 1+Q1_1==A ], cost: 2 122: f132 -> f144 : D'=free_87+free_88+free_85, R'=free_78, S'=free_79, D1'=free_86, R1'=free_87, S1'=free_88, T1'=free_85, [ C1>=1+Q1_1 && A>=1+Q1_1 && A>=2+Q1_1 ], cost: 2 123: f132 -> f144 : D'=free_84+free_82+free_83, R'=free_80, S'=free_81, D1'=0, Q1_1'=-1+A, R1'=free_83, S1'=free_84, T1'=free_82, [ Q1_1>=1+C1 && A>=1+Q1_1 && 1+Q1_1==A ], cost: 2 124: f132 -> f144 : D'=free_87+free_88+free_85, R'=free_80, S'=free_81, D1'=free_86, R1'=free_87, S1'=free_88, T1'=free_85, [ Q1_1>=1+C1 && A>=1+Q1_1 && A>=2+Q1_1 ], cost: 2 42: f132 -> f148 : Q1_1'=C1, [ A>=1+Q1_1 && C1==Q1_1 ], cost: 1 70: f132 -> f41 : [ Q1_1>=A ], cost: 1 146: [29] -> [30] : H'=1+A, R'=free_198*D+O*free_199, Q1_1'=-1+A, Y1'=A, [ Q>=1+A && 2+Q1_1>=A && A>=H && 1+Q1_1==A ], cost: 2-H+A 147: [29] -> [30] : H'=1+A, R'=free_201*D+free_200*V+O*free_202, Y1'=A, [ Q>=1+A && 2+Q1_1>=A && A>=2+Q1_1 && A>=H ], cost: 2-H+A 148: [29] -> [30] : H'=1+A, R'=V*free_203+free_204*D+O*free_205, Y1'=A, [ Q>=1+A && 2+Q1_1>=A && Q1_1>=A && A>=H ], cost: 2-H+A 149: [29] -> [30] : H'=4+Q1_1, R'=free_201*D+free_200*V+O*free_202, Y1'=3+Q1_1, [ Q>=1+A && A>=3+Q1_1 && A>=2+Q1_1 && 3+Q1_1>=H ], cost: 5-H+Q1_1 67: [30] -> f132 : Q1_1'=1+Q1_1, [ H>=1+Y1 ], cost: 1 78: [31] -> f18 : A'=G, Q_1'=0, [ H>=1+G ], cost: 1 Eliminating 5 self-loops for location f23 Self-Loop 95 has the metering function: -1+B, resulting in the new transition 150. Self-Loop 96 has the metering function: -1+B, resulting in the new transition 151. Self-Loop 98 has the metering function: -1+B, resulting in the new transition 152. Self-Loop 99 has the metering function: -1+B, resulting in the new transition 153. Self-Loop 102 has the metering function: -1+B, resulting in the new transition 154. Removing the self-loops: 95 96 98 99 102. Eliminating 2 self-loops for location f93 Removing the self-loops: 114 115. Adding an epsilon transition (to model nonexecution of the loops): 157. Removed all Self-loops using metering functions (where possible): Start location: f2 109: f73 -> f77 : [ 29>=C && 9>=C ], cost: 2 110: f73 -> f77 : [ 29>=C && C>=11 ], cost: 2 112: f73 -> f77 : [ C>=31 && C>=11 ], cost: 2 113: f73 -> f77 : C'=30, [ C==30 && 30>=11 ], cost: 2 111: f73 -> f80 : C'=10, Q_1'=Q_1+D, [ 29>=C && C==10 ], cost: 2 30: f77 -> f80 : C'=20, Q_1'=Q_1+D, [ C==20 ], cost: 1 33: f77 -> f93 : C'=1+C, [ 19>=C ], cost: 1 34: f77 -> f93 : C'=1+C, [ C>=21 ], cost: 1 6: f144 -> f148 : D'=0, [ D==0 ], cost: 1 48: f144 -> f148 : R'=free_94, S'=free_95, D1'=free_93, [ D1>=D*free_99 && D*free_99+free_99>=1+D1 && free_99>=free_93 && D1>=free_96*D && free_96+free_96*D>=1+D1 && free_93>=free_96 && S>=free_97*D && free_97+free_97*D>=1+S && free_97>=free_95 && S>=free_98*D && free_98*D+free_98>=1+S && free_95>=free_98 && 0>=1+D && R>=free_100*D && free_100+free_100*D>=1+R && free_100>=free_94 && R>=free_101*D && free_101+free_101*D>=1+R && free_94>=free_101 ], cost: 1 49: f144 -> f148 : R'=free_103, S'=free_104, D1'=free_102, [ D1>=free_108*D && free_108*D+free_108>=1+D1 && free_108>=free_102 && D1>=free_105*D && free_105*D+free_105>=1+D1 && free_102>=free_105 && S>=free_106*D && free_106*D+free_106>=1+S && free_106>=free_104 && S>=free_107*D && free_107*D+free_107>=1+S && free_104>=free_107 && D>=1 && R>=free_109*D && free_109+free_109*D>=1+R && free_109>=free_103 && R>=free_110*D && free_110*D+free_110>=1+R && free_103>=free_110 ], cost: 1 125: f148 -> f156 : E'=free_111, U1'=free_112, V1'=free_111, [ R>=0 && 0>=1+free_111 ], cost: 2 126: f148 -> f156 : E'=free_111, U1'=free_112, V1'=free_111, [ R>=0 && free_111>=1 ], cost: 2 128: f148 -> f156 : E'=-free_113, W1'=free_114, X1'=free_113, [ 0>=1+R && 0>=1-free_113 ], cost: 2 129: f148 -> f156 : E'=-free_113, W1'=free_114, X1'=free_113, [ 0>=1+R && -free_113>=1 ], cost: 2 127: f148 -> f132 : E'=0, Q1_1'=1+Q1_1, U1'=free_112, V1'=free_111, [ R>=0 && free_111==0 ], cost: 2 130: f148 -> f132 : E'=0, Q1_1'=1+Q1_1, W1'=free_114, X1'=free_113, [ 0>=1+R && -free_113==0 ], cost: 2 131: f156 -> [29] : D'=free_118, Q'=1+A, O'=free_119, R'=free_191*free_116+free_190, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=-1+A, [ D1>=E*free_120+R*free_120 && E*free_120+R*free_120+free_120>=1+D1 && free_120>=free_115 && D1>=E*free_122+R*free_122 && E*free_122+free_122+R*free_122>=1+D1 && free_115>=free_122 && D1>=E*free_126 && E*free_126+free_126>=1+D1 && free_126>=free_117 && D1>=E*free_128 && E*free_128+free_128>=1+D1 && free_117>=free_128 && S>=free_121*E+free_121*R && free_121+free_121*E+free_121*R>=1+S && free_121>=free_116 && S>=free_124*E+free_124*R && free_124+free_124*E+free_124*R>=1+S && free_116>=free_124 && E+R>=free_127*E && free_127+free_127*E>=1+E+R && free_127>=free_118 && E+R>=E*free_123 && free_123+E*free_123>=1+E+R && free_118>=free_123 && S>=E*free_125 && E*free_125+free_125>=1+S && free_125>=free_119 && S>=E*free_129 && free_129+E*free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=Q && 1+B==A ], cost: 2-Q+A 132: f156 -> [29] : D'=free_118, Q'=1+A, O'=free_119, R'=free_194*free_116+free_115*free_192+free_193, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=B, [ D1>=E*free_120+R*free_120 && E*free_120+R*free_120+free_120>=1+D1 && free_120>=free_115 && D1>=E*free_122+R*free_122 && E*free_122+free_122+R*free_122>=1+D1 && free_115>=free_122 && D1>=E*free_126 && E*free_126+free_126>=1+D1 && free_126>=free_117 && D1>=E*free_128 && E*free_128+free_128>=1+D1 && free_117>=free_128 && S>=free_121*E+free_121*R && free_121+free_121*E+free_121*R>=1+S && free_121>=free_116 && S>=free_124*E+free_124*R && free_124+free_124*E+free_124*R>=1+S && free_116>=free_124 && E+R>=free_127*E && free_127+free_127*E>=1+E+R && free_127>=free_118 && E+R>=E*free_123 && free_123+E*free_123>=1+E+R && free_118>=free_123 && S>=E*free_125 && E*free_125+free_125>=1+S && free_125>=free_119 && S>=E*free_129 && free_129+E*free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=2+B && A>=Q ], cost: 2-Q+A 134: f156 -> [29] : D'=free_133, Q'=1+A, O'=free_134, R'=free_190+free_191*free_131, S'=free_131, V'=free_132, D1'=free_130, Q1_1'=-1+A, [ Q1_1>=1+B && D1>=R*free_135+E*free_135 && R*free_135+free_135+E*free_135>=1+D1 && free_135>=free_130 && D1>=free_137*R+free_137*E && free_137+free_137*R+free_137*E>=1+D1 && free_130>=free_137 && D1>=E*free_141 && E*free_141+free_141>=1+D1 && free_141>=free_132 && D1>=E*free_143 && E*free_143+free_143>=1+D1 && free_132>=free_143 && S>=E*free_136+R*free_136 && E*free_136+R*free_136+free_136>=1+S && free_136>=free_131 && S>=E*free_139+R*free_139 && E*free_139+R*free_139+free_139>=1+S && free_131>=free_139 && E+R>=E*free_142 && free_142+E*free_142>=1+E+R && free_142>=free_133 && E+R>=E*free_138 && E*free_138+free_138>=1+E+R && free_133>=free_138 && S>=free_140*E && free_140+free_140*E>=1+S && free_140>=free_134 && S>=E*free_144 && free_144+E*free_144>=1+S && free_134>=free_144 && C1==Q1_1 && A>=Q && 1+C1==A ], cost: 2-Q+A 138: f156 -> [29] : D'=free_148, Q'=1+A, O'=free_149, R'=free_194*free_146+free_145*free_192+free_193, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, [ B>=1+Q1_1 && D1>=free_150*E+free_150*R && free_150+free_150*E+free_150*R>=1+D1 && free_150>=free_145 && D1>=R*free_152+E*free_152 && R*free_152+free_152+E*free_152>=1+D1 && free_145>=free_152 && D1>=E*free_156 && E*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=E*free_158 && free_158+E*free_158>=1+D1 && free_147>=free_158 && S>=E*free_151+R*free_151 && E*free_151+free_151+R*free_151>=1+S && free_151>=free_146 && S>=E*free_154+free_154*R && E*free_154+free_154+free_154*R>=1+S && free_146>=free_154 && E+R>=E*free_157 && free_157+E*free_157>=1+E+R && free_157>=free_148 && E+R>=E*free_153 && E*free_153+free_153>=1+E+R && free_148>=free_153 && S>=E*free_155 && free_155+E*free_155>=1+S && free_155>=free_149 && S>=E*free_159 && E*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && A>=2+C1 && A>=Q ], cost: 2-Q+A 139: f156 -> [29] : D'=free_148, Q'=1+A, O'=free_149, R'=free_145*free_195+free_197*free_146+free_196, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, [ B>=1+Q1_1 && D1>=free_150*E+free_150*R && free_150+free_150*E+free_150*R>=1+D1 && free_150>=free_145 && D1>=R*free_152+E*free_152 && R*free_152+free_152+E*free_152>=1+D1 && free_145>=free_152 && D1>=E*free_156 && E*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=E*free_158 && free_158+E*free_158>=1+D1 && free_147>=free_158 && S>=E*free_151+R*free_151 && E*free_151+free_151+R*free_151>=1+S && free_151>=free_146 && S>=E*free_154+free_154*R && E*free_154+free_154+free_154*R>=1+S && free_146>=free_154 && E+R>=E*free_157 && free_157+E*free_157>=1+E+R && free_157>=free_148 && E+R>=E*free_153 && E*free_153+free_153>=1+E+R && free_148>=free_153 && S>=E*free_155 && free_155+E*free_155>=1+S && free_155>=free_149 && S>=E*free_159 && E*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && C1>=A && A>=Q ], cost: 2-Q+A 93: f2 -> [31] : F'=-(-1+Q-G)*free, H'=1+H, Q'=1+G, J'=free, [ G>=H && G>=Q ], cost: 4-Q+G 94: f2 -> [31] : F'=0, [], cost: 1 12: f18 -> f23 : C'=0, [ A>=1 ], cost: 1 150: f23 -> [32] : B'=1, E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 && 0>=1+free_1 ], cost: -2+2*B 151: f23 -> [32] : B'=1, E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 && free_1>=1 ], cost: -2+2*B 152: f23 -> [32] : B'=1, E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 && 0>=1+free_4 ], cost: -2+2*B 153: f23 -> [32] : B'=1, E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 && free_4>=1 ], cost: -2+2*B 154: f23 -> [32] : B'=1, E'=F, K'=-free_7, L'=free_7, M'=free_8, [ B>=2 && free_8>=1 ], cost: -2+2*B 104: f34 -> f73 : D'=free_12, O'=free_13, P'=free_10*free_11, [ A>=1+B && A>=2+B ], cost: 2 108: f34 -> f73 : D'=free_16, O'=free_17, P'=free_14*free_15, [ B>=1+A && B>=A ], cost: 2 20: f34 -> f41 : A'=-1+A, B'=A, D'=free_9, N'=A, [ A==B ], cost: 1 105: f34 -> f41 : A'=-2+A, B'=-1+A, D'=Q_1+free_12, J'=free_24, O'=free_13, P'=free_10*free_11, R'=-2*free_12+2*free_13, S'=-8*free_12*free_13+4*free_13^2+4*free_12^2+free_10*free_11, T'=free_25, U'=free_24, V'=free_24, B1'=Q_1-free_12+2*free_13, [ A>=1+B && 8*free_12*free_13>=1+4*free_13^2+4*free_12^2+free_10*free_11 && 1+B==A ], cost: 2 106: f34 -> f61 : B'=-1+A, D'=Q_1+free_12, J'=-2*free_12+2*free_13, O'=free_13, P'=free_10*free_11, R'=-2*free_12+2*free_13, S'=-8*free_12*free_13+4*free_13^2+4*free_12^2+free_10*free_11, T'=free_19, U'=free_20, V'=free_18-2*free_12+2*free_13, W'=free_18, X'=free_18, Y'=Q_1+free_18-free_12+2*free_13, [ A>=1+B && 4*free_13^2+4*free_12^2+free_10*free_11>=8*free_12*free_13 && 2*free_13>=2*free_12 && 1+B==A ], cost: 2 107: f34 -> f61 : B'=-1+A, D'=Q_1+free_12, J'=-2*free_12+2*free_13, O'=free_13, P'=free_10*free_11, R'=-2*free_12+2*free_13, S'=-8*free_12*free_13+4*free_13^2+4*free_12^2+free_10*free_11, T'=free_22, U'=free_23, V'=-free_21-2*free_12+2*free_13, X'=-free_21, Y'=Q_1-free_21-free_12+2*free_13, Z'=free_21, [ A>=1+B && 4*free_13^2+4*free_12^2+free_10*free_11>=8*free_12*free_13 && 2*free_12>=1+2*free_13 && 1+B==A ], cost: 2 65: f41 -> f18 : [ C>=31 && A>=2+B ], cost: 1 66: f41 -> f18 : [ 1+B>=A ], cost: 1 64: f41 -> f23 : [ 30>=C && A>=2+B ], cost: 1 25: f61 -> f41 : A'=-2+A, V'=0, A1'=0, [ V==0 ], cost: 1 26: f61 -> f41 : A'=-2+A, A1'=0, [ 0>=1+V ], cost: 1 27: f61 -> f41 : A'=-2+A, A1'=0, [ V>=1 ], cost: 1 80: f80 -> f93 : C'=1+C, D'=3*free_226, E'=4*free_226, H'=1+A, J'=free_226, O'=3*free_226, P'=free_225, Z1'=4*free_226-free_227, A2'=free_227, [ A>=H && 1+A>=1+A ], cost: 2-H+A 155: f93 -> [33] : E'=free_59+free_53+free_63, R'=free_58, S'=free_52, V'=free_54, C1'=-1+C1, D1'=free_56, E1'=free_59, F1'=free_63, G1'=free_53, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && 0>=1+free_55*free_62+free_65*free_62 ], cost: 2 156: f93 -> [33] : E'=free_59+free_53+free_63, R'=free_58, S'=free_52, V'=free_54, C1'=-1+C1, D1'=free_56, E1'=free_59, F1'=free_63, G1'=free_53, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_55*free_62+free_65*free_62>=1 ], cost: 2 157: f93 -> [33] : [], cost: 0 117: f124 -> f132 : H'=3+C1, [ A>=2+C1 && H==2+C1 && 3+C1>=1+A ], cost: 4-H+C1 118: f124 -> f132 : H'=1+H, [ 1+C1>=H && A>=H && 1+H>=1+A ], cost: 2 119: f124 -> f132 : H'=1+A, [ H>=3+C1 && A>=H && 1+A>=1+A ], cost: 2-H+A 120: f124 -> f132 : [ H>=1+A ], cost: 1 121: f132 -> f144 : D'=free_84+free_82+free_83, R'=free_78, S'=free_79, D1'=0, Q1_1'=-1+A, R1'=free_83, S1'=free_84, T1'=free_82, [ C1>=1+Q1_1 && A>=1+Q1_1 && 1+Q1_1==A ], cost: 2 122: f132 -> f144 : D'=free_87+free_88+free_85, R'=free_78, S'=free_79, D1'=free_86, R1'=free_87, S1'=free_88, T1'=free_85, [ C1>=1+Q1_1 && A>=1+Q1_1 && A>=2+Q1_1 ], cost: 2 123: f132 -> f144 : D'=free_84+free_82+free_83, R'=free_80, S'=free_81, D1'=0, Q1_1'=-1+A, R1'=free_83, S1'=free_84, T1'=free_82, [ Q1_1>=1+C1 && A>=1+Q1_1 && 1+Q1_1==A ], cost: 2 124: f132 -> f144 : D'=free_87+free_88+free_85, R'=free_80, S'=free_81, D1'=free_86, R1'=free_87, S1'=free_88, T1'=free_85, [ Q1_1>=1+C1 && A>=1+Q1_1 && A>=2+Q1_1 ], cost: 2 42: f132 -> f148 : Q1_1'=C1, [ A>=1+Q1_1 && C1==Q1_1 ], cost: 1 70: f132 -> f41 : [ Q1_1>=A ], cost: 1 146: [29] -> [30] : H'=1+A, R'=free_198*D+O*free_199, Q1_1'=-1+A, Y1'=A, [ Q>=1+A && 2+Q1_1>=A && A>=H && 1+Q1_1==A ], cost: 2-H+A 147: [29] -> [30] : H'=1+A, R'=free_201*D+free_200*V+O*free_202, Y1'=A, [ Q>=1+A && 2+Q1_1>=A && A>=2+Q1_1 && A>=H ], cost: 2-H+A 148: [29] -> [30] : H'=1+A, R'=V*free_203+free_204*D+O*free_205, Y1'=A, [ Q>=1+A && 2+Q1_1>=A && Q1_1>=A && A>=H ], cost: 2-H+A 149: [29] -> [30] : H'=4+Q1_1, R'=free_201*D+free_200*V+O*free_202, Y1'=3+Q1_1, [ Q>=1+A && A>=3+Q1_1 && A>=2+Q1_1 && 3+Q1_1>=H ], cost: 5-H+Q1_1 67: [30] -> f132 : Q1_1'=1+Q1_1, [ H>=1+Y1 ], cost: 1 78: [31] -> f18 : A'=G, Q_1'=0, [ H>=1+G ], cost: 1 13: [32] -> f34 : [ 1>=B ], cost: 1 97: [32] -> f34 : E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 ], cost: 2 100: [32] -> f34 : E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 ], cost: 2 103: [32] -> f34 : E'=F, K'=-free_7, L'=free_7, M'=free_8, [ B>=2 ], cost: 2 72: [33] -> f124 : [ B>=1+C1 ], cost: 1 73: [33] -> f124 : E'=free_207+free_211+free_212, R'=free_210, S'=free_206, V'=free_208, C1'=B, D1'=free_209, E1'=free_211, F1'=free_212, G1'=free_207, [ free_223>=free_212*free_219+free_211*free_219+free_207*free_219 && free_212*free_219+free_211*free_219+free_207*free_219+free_219>=1+free_223 && free_219>=free_209 && free_223>=free_212*free_213+free_207*free_213+free_211*free_213 && free_212*free_213+free_207*free_213+free_211*free_213+free_213>=1+free_223 && free_209>=free_213 && free_208^2+O*D>=O*free_208+free_208*D+P+free_222*free_216 && O*free_208+free_208*D+P+free_216+free_222*free_216>=1+free_208^2+O*D && free_218+free_216>=free_214*free_212+free_207*free_214+free_214*free_211 && free_214*free_212+free_214+free_207*free_214+free_214*free_211>=1+free_218+free_216 && free_214>=free_210 && free_208^2+O*D>=O*free_208+free_224*free_222+free_208*D+P && O*free_208+free_224*free_222+free_208*D+free_224+P>=1+free_208^2+O*D && free_224+free_218>=free_207*free_220+free_220*free_211+free_220*free_212 && free_220+free_207*free_220+free_220*free_211+free_220*free_212>=1+free_224+free_218 && free_210>=free_220 && free_208+free_221>=free_217*free_211+free_207*free_217+O+free_217*free_212+D && free_217*free_211+free_217+free_207*free_217+O+free_217*free_212+D>=1+free_208+free_221 && free_217>=free_206 && free_208+free_221>=free_211*free_215+free_207*free_215+free_215*free_212+O+D && free_211*free_215+free_207*free_215+free_215*free_212+O+free_215+D>=1+free_208+free_221 && free_206>=free_215 && B==C1 ], cost: 1 116: [33] -> f124 : E'=free_59+free_53+free_63, R'=free_58, S'=free_52, V'=free_54, D1'=free_56, E1'=free_59, F1'=free_63, G1'=free_53, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 ], cost: 2 Applied chaining over branches and pruning: Start location: f2 30: f77 -> f80 : C'=20, Q_1'=Q_1+D, [ C==20 ], cost: 1 33: f77 -> f93 : C'=1+C, [ 19>=C ], cost: 1 34: f77 -> f93 : C'=1+C, [ C>=21 ], cost: 1 127: f148 -> f132 : E'=0, Q1_1'=1+Q1_1, U1'=free_112, V1'=free_111, [ R>=0 && free_111==0 ], cost: 2 130: f148 -> f132 : E'=0, Q1_1'=1+Q1_1, W1'=free_114, X1'=free_113, [ 0>=1+R && -free_113==0 ], cost: 2 211: f148 -> [29] : D'=free_118, E'=free_111, Q'=1+A, O'=free_119, R'=free_191*free_116+free_190, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=-1+A, U1'=free_112, V1'=free_111, [ R>=0 && 0>=1+free_111 && D1>=R*free_120+free_111*free_120 && R*free_120+free_120+free_111*free_120>=1+D1 && free_120>=free_115 && D1>=free_111*free_122+R*free_122 && free_122+free_111*free_122+R*free_122>=1+D1 && free_115>=free_122 && D1>=free_111*free_126 && free_126+free_111*free_126>=1+D1 && free_126>=free_117 && D1>=free_111*free_128 && free_128+free_111*free_128>=1+D1 && free_117>=free_128 && S>=free_111*free_121+free_121*R && free_121+free_111*free_121+free_121*R>=1+S && free_121>=free_116 && S>=free_111*free_124+free_124*R && free_124+free_111*free_124+free_124*R>=1+S && free_116>=free_124 && free_111+R>=free_111*free_127 && free_127+free_111*free_127>=1+free_111+R && free_127>=free_118 && free_111+R>=free_111*free_123 && free_111*free_123+free_123>=1+free_111+R && free_118>=free_123 && S>=free_111*free_125 && free_125+free_111*free_125>=1+S && free_125>=free_119 && S>=free_111*free_129 && free_111*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=Q && 1+B==A ], cost: 4-Q+A 212: f148 -> [29] : D'=free_118, E'=free_111, Q'=1+A, O'=free_119, R'=free_194*free_116+free_115*free_192+free_193, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=B, U1'=free_112, V1'=free_111, [ R>=0 && 0>=1+free_111 && D1>=R*free_120+free_111*free_120 && R*free_120+free_120+free_111*free_120>=1+D1 && free_120>=free_115 && D1>=free_111*free_122+R*free_122 && free_122+free_111*free_122+R*free_122>=1+D1 && free_115>=free_122 && D1>=free_111*free_126 && free_126+free_111*free_126>=1+D1 && free_126>=free_117 && D1>=free_111*free_128 && free_128+free_111*free_128>=1+D1 && free_117>=free_128 && S>=free_111*free_121+free_121*R && free_121+free_111*free_121+free_121*R>=1+S && free_121>=free_116 && S>=free_111*free_124+free_124*R && free_124+free_111*free_124+free_124*R>=1+S && free_116>=free_124 && free_111+R>=free_111*free_127 && free_127+free_111*free_127>=1+free_111+R && free_127>=free_118 && free_111+R>=free_111*free_123 && free_111*free_123+free_123>=1+free_111+R && free_118>=free_123 && S>=free_111*free_125 && free_125+free_111*free_125>=1+S && free_125>=free_119 && S>=free_111*free_129 && free_111*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=2+B && A>=Q ], cost: 4-Q+A 213: f148 -> [29] : D'=free_133, E'=free_111, Q'=1+A, O'=free_134, R'=free_190+free_191*free_131, S'=free_131, V'=free_132, D1'=free_130, Q1_1'=-1+A, U1'=free_112, V1'=free_111, [ R>=0 && 0>=1+free_111 && Q1_1>=1+B && D1>=R*free_135+free_111*free_135 && R*free_135+free_111*free_135+free_135>=1+D1 && free_135>=free_130 && D1>=free_111*free_137+free_137*R && free_111*free_137+free_137+free_137*R>=1+D1 && free_130>=free_137 && D1>=free_111*free_141 && free_141+free_111*free_141>=1+D1 && free_141>=free_132 && D1>=free_111*free_143 && free_111*free_143+free_143>=1+D1 && free_132>=free_143 && S>=R*free_136+free_111*free_136 && R*free_136+free_136+free_111*free_136>=1+S && free_136>=free_131 && S>=R*free_139+free_111*free_139 && R*free_139+free_139+free_111*free_139>=1+S && free_131>=free_139 && free_111+R>=free_111*free_142 && free_111*free_142+free_142>=1+free_111+R && free_142>=free_133 && free_111+R>=free_111*free_138 && free_138+free_111*free_138>=1+free_111+R && free_133>=free_138 && S>=free_111*free_140 && free_140+free_111*free_140>=1+S && free_140>=free_134 && S>=free_111*free_144 && free_111*free_144+free_144>=1+S && free_134>=free_144 && C1==Q1_1 && A>=Q && 1+C1==A ], cost: 4-Q+A 214: f148 -> [29] : D'=free_148, E'=free_111, Q'=1+A, O'=free_149, R'=free_194*free_146+free_145*free_192+free_193, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, U1'=free_112, V1'=free_111, [ R>=0 && 0>=1+free_111 && B>=1+Q1_1 && D1>=free_111*free_150+free_150*R && free_150+free_111*free_150+free_150*R>=1+D1 && free_150>=free_145 && D1>=free_111*free_152+R*free_152 && free_111*free_152+R*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=free_111*free_156 && free_111*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=free_111*free_158 && free_111*free_158+free_158>=1+D1 && free_147>=free_158 && S>=R*free_151+free_111*free_151 && free_151+R*free_151+free_111*free_151>=1+S && free_151>=free_146 && S>=free_154*R+free_111*free_154 && free_154+free_154*R+free_111*free_154>=1+S && free_146>=free_154 && free_111+R>=free_111*free_157 && free_157+free_111*free_157>=1+free_111+R && free_157>=free_148 && free_111+R>=free_111*free_153 && free_111*free_153+free_153>=1+free_111+R && free_148>=free_153 && S>=free_111*free_155 && free_111*free_155+free_155>=1+S && free_155>=free_149 && S>=free_111*free_159 && free_111*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && A>=2+C1 && A>=Q ], cost: 4-Q+A 215: f148 -> [29] : D'=free_148, E'=free_111, Q'=1+A, O'=free_149, R'=free_145*free_195+free_197*free_146+free_196, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, U1'=free_112, V1'=free_111, [ R>=0 && 0>=1+free_111 && B>=1+Q1_1 && D1>=free_111*free_150+free_150*R && free_150+free_111*free_150+free_150*R>=1+D1 && free_150>=free_145 && D1>=free_111*free_152+R*free_152 && free_111*free_152+R*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=free_111*free_156 && free_111*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=free_111*free_158 && free_111*free_158+free_158>=1+D1 && free_147>=free_158 && S>=R*free_151+free_111*free_151 && free_151+R*free_151+free_111*free_151>=1+S && free_151>=free_146 && S>=free_154*R+free_111*free_154 && free_154+free_154*R+free_111*free_154>=1+S && free_146>=free_154 && free_111+R>=free_111*free_157 && free_157+free_111*free_157>=1+free_111+R && free_157>=free_148 && free_111+R>=free_111*free_153 && free_111*free_153+free_153>=1+free_111+R && free_148>=free_153 && S>=free_111*free_155 && free_111*free_155+free_155>=1+S && free_155>=free_149 && S>=free_111*free_159 && free_111*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && C1>=A && A>=Q ], cost: 4-Q+A 216: f148 -> [29] : D'=free_118, E'=free_111, Q'=1+A, O'=free_119, R'=free_191*free_116+free_190, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=-1+A, U1'=free_112, V1'=free_111, [ R>=0 && free_111>=1 && D1>=R*free_120+free_111*free_120 && R*free_120+free_120+free_111*free_120>=1+D1 && free_120>=free_115 && D1>=free_111*free_122+R*free_122 && free_122+free_111*free_122+R*free_122>=1+D1 && free_115>=free_122 && D1>=free_111*free_126 && free_126+free_111*free_126>=1+D1 && free_126>=free_117 && D1>=free_111*free_128 && free_128+free_111*free_128>=1+D1 && free_117>=free_128 && S>=free_111*free_121+free_121*R && free_121+free_111*free_121+free_121*R>=1+S && free_121>=free_116 && S>=free_111*free_124+free_124*R && free_124+free_111*free_124+free_124*R>=1+S && free_116>=free_124 && free_111+R>=free_111*free_127 && free_127+free_111*free_127>=1+free_111+R && free_127>=free_118 && free_111+R>=free_111*free_123 && free_111*free_123+free_123>=1+free_111+R && free_118>=free_123 && S>=free_111*free_125 && free_125+free_111*free_125>=1+S && free_125>=free_119 && S>=free_111*free_129 && free_111*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=Q && 1+B==A ], cost: 4-Q+A 217: f148 -> [29] : D'=free_118, E'=free_111, Q'=1+A, O'=free_119, R'=free_194*free_116+free_115*free_192+free_193, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=B, U1'=free_112, V1'=free_111, [ R>=0 && free_111>=1 && D1>=R*free_120+free_111*free_120 && R*free_120+free_120+free_111*free_120>=1+D1 && free_120>=free_115 && D1>=free_111*free_122+R*free_122 && free_122+free_111*free_122+R*free_122>=1+D1 && free_115>=free_122 && D1>=free_111*free_126 && free_126+free_111*free_126>=1+D1 && free_126>=free_117 && D1>=free_111*free_128 && free_128+free_111*free_128>=1+D1 && free_117>=free_128 && S>=free_111*free_121+free_121*R && free_121+free_111*free_121+free_121*R>=1+S && free_121>=free_116 && S>=free_111*free_124+free_124*R && free_124+free_111*free_124+free_124*R>=1+S && free_116>=free_124 && free_111+R>=free_111*free_127 && free_127+free_111*free_127>=1+free_111+R && free_127>=free_118 && free_111+R>=free_111*free_123 && free_111*free_123+free_123>=1+free_111+R && free_118>=free_123 && S>=free_111*free_125 && free_125+free_111*free_125>=1+S && free_125>=free_119 && S>=free_111*free_129 && free_111*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=2+B && A>=Q ], cost: 4-Q+A 218: f148 -> [29] : D'=free_133, E'=free_111, Q'=1+A, O'=free_134, R'=free_190+free_191*free_131, S'=free_131, V'=free_132, D1'=free_130, Q1_1'=-1+A, U1'=free_112, V1'=free_111, [ R>=0 && free_111>=1 && Q1_1>=1+B && D1>=R*free_135+free_111*free_135 && R*free_135+free_111*free_135+free_135>=1+D1 && free_135>=free_130 && D1>=free_111*free_137+free_137*R && free_111*free_137+free_137+free_137*R>=1+D1 && free_130>=free_137 && D1>=free_111*free_141 && free_141+free_111*free_141>=1+D1 && free_141>=free_132 && D1>=free_111*free_143 && free_111*free_143+free_143>=1+D1 && free_132>=free_143 && S>=R*free_136+free_111*free_136 && R*free_136+free_136+free_111*free_136>=1+S && free_136>=free_131 && S>=R*free_139+free_111*free_139 && R*free_139+free_139+free_111*free_139>=1+S && free_131>=free_139 && free_111+R>=free_111*free_142 && free_111*free_142+free_142>=1+free_111+R && free_142>=free_133 && free_111+R>=free_111*free_138 && free_138+free_111*free_138>=1+free_111+R && free_133>=free_138 && S>=free_111*free_140 && free_140+free_111*free_140>=1+S && free_140>=free_134 && S>=free_111*free_144 && free_111*free_144+free_144>=1+S && free_134>=free_144 && C1==Q1_1 && A>=Q && 1+C1==A ], cost: 4-Q+A 219: f148 -> [29] : D'=free_148, E'=free_111, Q'=1+A, O'=free_149, R'=free_194*free_146+free_145*free_192+free_193, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, U1'=free_112, V1'=free_111, [ R>=0 && free_111>=1 && B>=1+Q1_1 && D1>=free_111*free_150+free_150*R && free_150+free_111*free_150+free_150*R>=1+D1 && free_150>=free_145 && D1>=free_111*free_152+R*free_152 && free_111*free_152+R*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=free_111*free_156 && free_111*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=free_111*free_158 && free_111*free_158+free_158>=1+D1 && free_147>=free_158 && S>=R*free_151+free_111*free_151 && free_151+R*free_151+free_111*free_151>=1+S && free_151>=free_146 && S>=free_154*R+free_111*free_154 && free_154+free_154*R+free_111*free_154>=1+S && free_146>=free_154 && free_111+R>=free_111*free_157 && free_157+free_111*free_157>=1+free_111+R && free_157>=free_148 && free_111+R>=free_111*free_153 && free_111*free_153+free_153>=1+free_111+R && free_148>=free_153 && S>=free_111*free_155 && free_111*free_155+free_155>=1+S && free_155>=free_149 && S>=free_111*free_159 && free_111*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && A>=2+C1 && A>=Q ], cost: 4-Q+A 220: f148 -> [29] : D'=free_148, E'=free_111, Q'=1+A, O'=free_149, R'=free_145*free_195+free_197*free_146+free_196, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, U1'=free_112, V1'=free_111, [ R>=0 && free_111>=1 && B>=1+Q1_1 && D1>=free_111*free_150+free_150*R && free_150+free_111*free_150+free_150*R>=1+D1 && free_150>=free_145 && D1>=free_111*free_152+R*free_152 && free_111*free_152+R*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=free_111*free_156 && free_111*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=free_111*free_158 && free_111*free_158+free_158>=1+D1 && free_147>=free_158 && S>=R*free_151+free_111*free_151 && free_151+R*free_151+free_111*free_151>=1+S && free_151>=free_146 && S>=free_154*R+free_111*free_154 && free_154+free_154*R+free_111*free_154>=1+S && free_146>=free_154 && free_111+R>=free_111*free_157 && free_157+free_111*free_157>=1+free_111+R && free_157>=free_148 && free_111+R>=free_111*free_153 && free_111*free_153+free_153>=1+free_111+R && free_148>=free_153 && S>=free_111*free_155 && free_111*free_155+free_155>=1+S && free_155>=free_149 && S>=free_111*free_159 && free_111*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && C1>=A && A>=Q ], cost: 4-Q+A 221: f148 -> [29] : D'=free_118, E'=-free_113, Q'=1+A, O'=free_119, R'=free_191*free_116+free_190, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=-1+A, W1'=free_114, X1'=free_113, [ 0>=1+R && 0>=1-free_113 && D1>=-free_113*free_120+R*free_120 && -free_113*free_120+R*free_120+free_120>=1+D1 && free_120>=free_115 && D1>=-free_122*free_113+R*free_122 && free_122-free_122*free_113+R*free_122>=1+D1 && free_115>=free_122 && D1>=-free_113*free_126 && -free_113*free_126+free_126>=1+D1 && free_126>=free_117 && D1>=-free_128*free_113 && free_128-free_128*free_113>=1+D1 && free_117>=free_128 && S>=-free_121*free_113+free_121*R && free_121-free_121*free_113+free_121*R>=1+S && free_121>=free_116 && S>=-free_124*free_113+free_124*R && free_124-free_124*free_113+free_124*R>=1+S && free_116>=free_124 && R-free_113>=-free_127*free_113 && free_127-free_127*free_113>=1+R-free_113 && free_127>=free_118 && R-free_113>=-free_113*free_123 && -free_113*free_123+free_123>=1+R-free_113 && free_118>=free_123 && S>=-free_125*free_113 && -free_125*free_113+free_125>=1+S && free_125>=free_119 && S>=-free_113*free_129 && -free_113*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=Q && 1+B==A ], cost: 4-Q+A 222: f148 -> [29] : D'=free_118, E'=-free_113, Q'=1+A, O'=free_119, R'=free_194*free_116+free_115*free_192+free_193, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=B, W1'=free_114, X1'=free_113, [ 0>=1+R && 0>=1-free_113 && D1>=-free_113*free_120+R*free_120 && -free_113*free_120+R*free_120+free_120>=1+D1 && free_120>=free_115 && D1>=-free_122*free_113+R*free_122 && free_122-free_122*free_113+R*free_122>=1+D1 && free_115>=free_122 && D1>=-free_113*free_126 && -free_113*free_126+free_126>=1+D1 && free_126>=free_117 && D1>=-free_128*free_113 && free_128-free_128*free_113>=1+D1 && free_117>=free_128 && S>=-free_121*free_113+free_121*R && free_121-free_121*free_113+free_121*R>=1+S && free_121>=free_116 && S>=-free_124*free_113+free_124*R && free_124-free_124*free_113+free_124*R>=1+S && free_116>=free_124 && R-free_113>=-free_127*free_113 && free_127-free_127*free_113>=1+R-free_113 && free_127>=free_118 && R-free_113>=-free_113*free_123 && -free_113*free_123+free_123>=1+R-free_113 && free_118>=free_123 && S>=-free_125*free_113 && -free_125*free_113+free_125>=1+S && free_125>=free_119 && S>=-free_113*free_129 && -free_113*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=2+B && A>=Q ], cost: 4-Q+A 223: f148 -> [29] : D'=free_133, E'=-free_113, Q'=1+A, O'=free_134, R'=free_190+free_191*free_131, S'=free_131, V'=free_132, D1'=free_130, Q1_1'=-1+A, W1'=free_114, X1'=free_113, [ 0>=1+R && 0>=1-free_113 && Q1_1>=1+B && D1>=R*free_135-free_135*free_113 && R*free_135-free_135*free_113+free_135>=1+D1 && free_135>=free_130 && D1>=free_137*R-free_137*free_113 && free_137+free_137*R-free_137*free_113>=1+D1 && free_130>=free_137 && D1>=-free_141*free_113 && free_141-free_141*free_113>=1+D1 && free_141>=free_132 && D1>=-free_113*free_143 && -free_113*free_143+free_143>=1+D1 && free_132>=free_143 && S>=-free_113*free_136+R*free_136 && -free_113*free_136+R*free_136+free_136>=1+S && free_136>=free_131 && S>=-free_113*free_139+R*free_139 && -free_113*free_139+R*free_139+free_139>=1+S && free_131>=free_139 && R-free_113>=-free_142*free_113 && -free_142*free_113+free_142>=1+R-free_113 && free_142>=free_133 && R-free_113>=-free_138*free_113 && free_138-free_138*free_113>=1+R-free_113 && free_133>=free_138 && S>=-free_140*free_113 && free_140-free_140*free_113>=1+S && free_140>=free_134 && S>=-free_144*free_113 && free_144-free_144*free_113>=1+S && free_134>=free_144 && C1==Q1_1 && A>=Q && 1+C1==A ], cost: 4-Q+A 224: f148 -> [29] : D'=free_148, E'=-free_113, Q'=1+A, O'=free_149, R'=free_194*free_146+free_145*free_192+free_193, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, W1'=free_114, X1'=free_113, [ 0>=1+R && 0>=1-free_113 && B>=1+Q1_1 && D1>=-free_150*free_113+free_150*R && free_150-free_150*free_113+free_150*R>=1+D1 && free_150>=free_145 && D1>=R*free_152-free_113*free_152 && R*free_152-free_113*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=-free_113*free_156 && -free_113*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=-free_113*free_158 && -free_113*free_158+free_158>=1+D1 && free_147>=free_158 && S>=-free_151*free_113+R*free_151 && free_151-free_151*free_113+R*free_151>=1+S && free_151>=free_146 && S>=-free_154*free_113+free_154*R && -free_154*free_113+free_154+free_154*R>=1+S && free_146>=free_154 && R-free_113>=-free_157*free_113 && free_157-free_157*free_113>=1+R-free_113 && free_157>=free_148 && R-free_113>=-free_113*free_153 && -free_113*free_153+free_153>=1+R-free_113 && free_148>=free_153 && S>=-free_155*free_113 && -free_155*free_113+free_155>=1+S && free_155>=free_149 && S>=-free_113*free_159 && -free_113*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && A>=2+C1 && A>=Q ], cost: 4-Q+A 225: f148 -> [29] : D'=free_148, E'=-free_113, Q'=1+A, O'=free_149, R'=free_145*free_195+free_197*free_146+free_196, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, W1'=free_114, X1'=free_113, [ 0>=1+R && 0>=1-free_113 && B>=1+Q1_1 && D1>=-free_150*free_113+free_150*R && free_150-free_150*free_113+free_150*R>=1+D1 && free_150>=free_145 && D1>=R*free_152-free_113*free_152 && R*free_152-free_113*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=-free_113*free_156 && -free_113*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=-free_113*free_158 && -free_113*free_158+free_158>=1+D1 && free_147>=free_158 && S>=-free_151*free_113+R*free_151 && free_151-free_151*free_113+R*free_151>=1+S && free_151>=free_146 && S>=-free_154*free_113+free_154*R && -free_154*free_113+free_154+free_154*R>=1+S && free_146>=free_154 && R-free_113>=-free_157*free_113 && free_157-free_157*free_113>=1+R-free_113 && free_157>=free_148 && R-free_113>=-free_113*free_153 && -free_113*free_153+free_153>=1+R-free_113 && free_148>=free_153 && S>=-free_155*free_113 && -free_155*free_113+free_155>=1+S && free_155>=free_149 && S>=-free_113*free_159 && -free_113*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && C1>=A && A>=Q ], cost: 4-Q+A 158: f2 -> f18 : A'=G, F'=-(-1+Q-G)*free, H'=1+H, Q'=1+G, J'=free, Q_1'=0, [ G>=H && G>=Q && 1+H>=1+G ], cost: 5-Q+G 159: f2 -> f18 : A'=G, F'=0, Q_1'=0, [ H>=1+G ], cost: 2 12: f18 -> f23 : C'=0, [ A>=1 ], cost: 1 160: f23 -> f34 : B'=1, E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 && 0>=1+free_1 && 1>=1 ], cost: -1+2*B 164: f23 -> f34 : B'=1, E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 && free_1>=1 && 1>=1 ], cost: -1+2*B 168: f23 -> f34 : B'=1, E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 && 0>=1+free_4 && 1>=1 ], cost: -1+2*B 172: f23 -> f34 : B'=1, E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 && free_4>=1 && 1>=1 ], cost: -1+2*B 176: f23 -> f34 : B'=1, E'=F, K'=-free_7, L'=free_7, M'=free_8, [ B>=2 && free_8>=1 && 1>=1 ], cost: -1+2*B 161: f23 -> [34] : B'=1, E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 && 0>=1+free_1 ], cost: -2+2*B 162: f23 -> [35] : B'=1, E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 && 0>=1+free_1 ], cost: -2+2*B 163: f23 -> [36] : B'=1, E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 && 0>=1+free_1 ], cost: -2+2*B 165: f23 -> [37] : B'=1, E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 && free_1>=1 ], cost: -2+2*B 166: f23 -> [38] : B'=1, E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 && free_1>=1 ], cost: -2+2*B 167: f23 -> [39] : B'=1, E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 && free_1>=1 ], cost: -2+2*B 169: f23 -> [40] : B'=1, E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 && 0>=1+free_4 ], cost: -2+2*B 170: f23 -> [41] : B'=1, E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 && 0>=1+free_4 ], cost: -2+2*B 171: f23 -> [42] : B'=1, E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 && 0>=1+free_4 ], cost: -2+2*B 173: f23 -> [43] : B'=1, E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 && free_4>=1 ], cost: -2+2*B 174: f23 -> [44] : B'=1, E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 && free_4>=1 ], cost: -2+2*B 175: f23 -> [45] : B'=1, E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 && free_4>=1 ], cost: -2+2*B 177: f23 -> [46] : B'=1, E'=F, K'=-free_7, L'=free_7, M'=free_8, [ B>=2 && free_8>=1 ], cost: -2+2*B 178: f23 -> [47] : B'=1, E'=F, K'=-free_7, L'=free_7, M'=free_8, [ B>=2 && free_8>=1 ], cost: -2+2*B 179: f23 -> [48] : B'=1, E'=F, K'=-free_7, L'=free_7, M'=free_8, [ B>=2 && free_8>=1 ], cost: -2+2*B 180: f34 -> f77 : D'=free_12, O'=free_13, P'=free_10*free_11, [ A>=1+B && A>=2+B && 29>=C && 9>=C ], cost: 4 181: f34 -> f77 : D'=free_12, O'=free_13, P'=free_10*free_11, [ A>=1+B && A>=2+B && 29>=C && C>=11 ], cost: 4 183: f34 -> f77 : C'=30, D'=free_12, O'=free_13, P'=free_10*free_11, [ A>=1+B && A>=2+B && C==30 && 30>=11 ], cost: 4 185: f34 -> f77 : D'=free_16, O'=free_17, P'=free_14*free_15, [ B>=1+A && B>=A && 29>=C && 9>=C ], cost: 4 186: f34 -> f77 : D'=free_16, O'=free_17, P'=free_14*free_15, [ B>=1+A && B>=A && 29>=C && C>=11 ], cost: 4 20: f34 -> f41 : A'=-1+A, B'=A, D'=free_9, N'=A, [ A==B ], cost: 1 105: f34 -> f41 : A'=-2+A, B'=-1+A, D'=Q_1+free_12, J'=free_24, O'=free_13, P'=free_10*free_11, R'=-2*free_12+2*free_13, S'=-8*free_12*free_13+4*free_13^2+4*free_12^2+free_10*free_11, T'=free_25, U'=free_24, V'=free_24, B1'=Q_1-free_12+2*free_13, [ A>=1+B && 8*free_12*free_13>=1+4*free_13^2+4*free_12^2+free_10*free_11 && 1+B==A ], cost: 2 191: f34 -> f41 : A'=-2+A, B'=-1+A, D'=Q_1+free_12, J'=-2*free_12+2*free_13, O'=free_13, P'=free_10*free_11, R'=-2*free_12+2*free_13, S'=-8*free_12*free_13+4*free_13^2+4*free_12^2+free_10*free_11, T'=free_19, U'=free_20, V'=free_18-2*free_12+2*free_13, W'=free_18, X'=free_18, Y'=Q_1+free_18-free_12+2*free_13, A1'=0, [ A>=1+B && 4*free_13^2+4*free_12^2+free_10*free_11>=8*free_12*free_13 && 2*free_13>=2*free_12 && 1+B==A && 0>=1+free_18-2*free_12+2*free_13 ], cost: 3 192: f34 -> f41 : A'=-2+A, B'=-1+A, D'=Q_1+free_12, J'=-2*free_12+2*free_13, O'=free_13, P'=free_10*free_11, R'=-2*free_12+2*free_13, S'=-8*free_12*free_13+4*free_13^2+4*free_12^2+free_10*free_11, T'=free_19, U'=free_20, V'=free_18-2*free_12+2*free_13, W'=free_18, X'=free_18, Y'=Q_1+free_18-free_12+2*free_13, A1'=0, [ A>=1+B && 4*free_13^2+4*free_12^2+free_10*free_11>=8*free_12*free_13 && 2*free_13>=2*free_12 && 1+B==A && free_18-2*free_12+2*free_13>=1 ], cost: 3 193: f34 -> f41 : A'=-2+A, B'=-1+A, D'=Q_1+free_12, J'=-2*free_12+2*free_13, O'=free_13, P'=free_10*free_11, R'=-2*free_12+2*free_13, S'=-8*free_12*free_13+4*free_13^2+4*free_12^2+free_10*free_11, T'=free_22, U'=free_23, V'=0, X'=-free_21, Y'=Q_1-free_21-free_12+2*free_13, Z'=free_21, A1'=0, [ A>=1+B && 4*free_13^2+4*free_12^2+free_10*free_11>=8*free_12*free_13 && 2*free_12>=1+2*free_13 && 1+B==A && -free_21-2*free_12+2*free_13==0 ], cost: 3 184: f34 -> f80 : C'=10, D'=free_12, O'=free_13, P'=free_10*free_11, Q_1'=Q_1+free_12, [ A>=1+B && A>=2+B && 29>=C && C==10 ], cost: 4 189: f34 -> f80 : C'=10, D'=free_16, O'=free_17, P'=free_14*free_15, Q_1'=Q_1+free_16, [ B>=1+A && B>=A && 29>=C && C==10 ], cost: 4 65: f41 -> f18 : [ C>=31 && A>=2+B ], cost: 1 66: f41 -> f18 : [ 1+B>=A ], cost: 1 64: f41 -> f23 : [ 30>=C && A>=2+B ], cost: 1 80: f80 -> f93 : C'=1+C, D'=3*free_226, E'=4*free_226, H'=1+A, J'=free_226, O'=3*free_226, P'=free_225, Z1'=4*free_226-free_227, A2'=free_227, [ A>=H && 1+A>=1+A ], cost: 2-H+A 196: f93 -> f124 : E'=free_207+free_211+free_212, R'=free_210, S'=free_206, V'=free_208, C1'=B, D1'=free_209, E1'=free_211, F1'=free_212, G1'=free_207, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && 0>=1+free_55*free_62+free_65*free_62 && free_223>=free_212*free_219+free_211*free_219+free_207*free_219 && free_212*free_219+free_211*free_219+free_207*free_219+free_219>=1+free_223 && free_219>=free_209 && free_223>=free_212*free_213+free_207*free_213+free_211*free_213 && free_212*free_213+free_207*free_213+free_211*free_213+free_213>=1+free_223 && free_209>=free_213 && free_208^2+O*D>=O*free_208+free_208*D+P+free_222*free_216 && O*free_208+free_208*D+P+free_216+free_222*free_216>=1+free_208^2+O*D && free_218+free_216>=free_214*free_212+free_207*free_214+free_214*free_211 && free_214*free_212+free_214+free_207*free_214+free_214*free_211>=1+free_218+free_216 && free_214>=free_210 && free_208^2+O*D>=O*free_208+free_224*free_222+free_208*D+P && O*free_208+free_224*free_222+free_208*D+free_224+P>=1+free_208^2+O*D && free_224+free_218>=free_207*free_220+free_220*free_211+free_220*free_212 && free_220+free_207*free_220+free_220*free_211+free_220*free_212>=1+free_224+free_218 && free_210>=free_220 && free_208+free_221>=free_217*free_211+free_207*free_217+O+free_217*free_212+D && free_217*free_211+free_217+free_207*free_217+O+free_217*free_212+D>=1+free_208+free_221 && free_217>=free_206 && free_208+free_221>=free_211*free_215+free_207*free_215+free_215*free_212+O+D && free_211*free_215+free_207*free_215+free_215*free_212+O+free_215+D>=1+free_208+free_221 && free_206>=free_215 && B==-1+C1 ], cost: 3 197: f93 -> f124 : E'=free_59+free_53+free_63, R'=free_58, S'=free_52, V'=free_54, C1'=-1+C1, D1'=free_56, E1'=free_59, F1'=free_63, G1'=free_53, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && 0>=1+free_55*free_62+free_65*free_62 && free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && -1+C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 ], cost: 4 198: f93 -> f124 : E'=free_207+free_211+free_212, R'=free_210, S'=free_206, V'=free_208, C1'=B, D1'=free_209, E1'=free_211, F1'=free_212, G1'=free_207, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_55*free_62+free_65*free_62>=1 && free_223>=free_212*free_219+free_211*free_219+free_207*free_219 && free_212*free_219+free_211*free_219+free_207*free_219+free_219>=1+free_223 && free_219>=free_209 && free_223>=free_212*free_213+free_207*free_213+free_211*free_213 && free_212*free_213+free_207*free_213+free_211*free_213+free_213>=1+free_223 && free_209>=free_213 && free_208^2+O*D>=O*free_208+free_208*D+P+free_222*free_216 && O*free_208+free_208*D+P+free_216+free_222*free_216>=1+free_208^2+O*D && free_218+free_216>=free_214*free_212+free_207*free_214+free_214*free_211 && free_214*free_212+free_214+free_207*free_214+free_214*free_211>=1+free_218+free_216 && free_214>=free_210 && free_208^2+O*D>=O*free_208+free_224*free_222+free_208*D+P && O*free_208+free_224*free_222+free_208*D+free_224+P>=1+free_208^2+O*D && free_224+free_218>=free_207*free_220+free_220*free_211+free_220*free_212 && free_220+free_207*free_220+free_220*free_211+free_220*free_212>=1+free_224+free_218 && free_210>=free_220 && free_208+free_221>=free_217*free_211+free_207*free_217+O+free_217*free_212+D && free_217*free_211+free_217+free_207*free_217+O+free_217*free_212+D>=1+free_208+free_221 && free_217>=free_206 && free_208+free_221>=free_211*free_215+free_207*free_215+free_215*free_212+O+D && free_211*free_215+free_207*free_215+free_215*free_212+O+free_215+D>=1+free_208+free_221 && free_206>=free_215 && B==-1+C1 ], cost: 3 199: f93 -> f124 : E'=free_59+free_53+free_63, R'=free_58, S'=free_52, V'=free_54, C1'=-1+C1, D1'=free_56, E1'=free_59, F1'=free_63, G1'=free_53, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_55*free_62+free_65*free_62>=1 && free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && -1+C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 ], cost: 4 200: f93 -> f124 : [ B>=1+C1 ], cost: 1 117: f124 -> f132 : H'=3+C1, [ A>=2+C1 && H==2+C1 && 3+C1>=1+A ], cost: 4-H+C1 118: f124 -> f132 : H'=1+H, [ 1+C1>=H && A>=H && 1+H>=1+A ], cost: 2 119: f124 -> f132 : H'=1+A, [ H>=3+C1 && A>=H && 1+A>=1+A ], cost: 2-H+A 120: f124 -> f132 : [ H>=1+A ], cost: 1 42: f132 -> f148 : Q1_1'=C1, [ A>=1+Q1_1 && C1==Q1_1 ], cost: 1 203: f132 -> f148 : D'=0, R'=free_78, S'=free_79, D1'=0, Q1_1'=-1+A, R1'=free_83, S1'=free_84, T1'=free_82, [ C1>=1+Q1_1 && A>=1+Q1_1 && 1+Q1_1==A && free_84+free_82+free_83==0 ], cost: 3 205: f132 -> f148 : D'=free_87+free_88+free_85, R'=free_94, S'=free_95, D1'=free_93, R1'=free_87, S1'=free_88, T1'=free_85, [ C1>=1+Q1_1 && A>=1+Q1_1 && A>=2+Q1_1 && free_86>=(free_87+free_88+free_85)*free_99 && (free_87+free_88+free_85)*free_99+free_99>=1+free_86 && free_99>=free_93 && free_86>=free_96*(free_87+free_88+free_85) && free_96+free_96*(free_87+free_88+free_85)>=1+free_86 && free_93>=free_96 && free_79>=(free_87+free_88+free_85)*free_97 && free_97+(free_87+free_88+free_85)*free_97>=1+free_79 && free_97>=free_95 && free_79>=(free_87+free_88+free_85)*free_98 && (free_87+free_88+free_85)*free_98+free_98>=1+free_79 && free_95>=free_98 && 0>=1+free_87+free_88+free_85 && free_78>=(free_87+free_88+free_85)*free_100 && free_100+(free_87+free_88+free_85)*free_100>=1+free_78 && free_100>=free_94 && free_78>=(free_87+free_88+free_85)*free_101 && (free_87+free_88+free_85)*free_101+free_101>=1+free_78 && free_94>=free_101 ], cost: 3 206: f132 -> f148 : D'=free_87+free_88+free_85, R'=free_103, S'=free_104, D1'=free_102, R1'=free_87, S1'=free_88, T1'=free_85, [ C1>=1+Q1_1 && A>=1+Q1_1 && A>=2+Q1_1 && free_86>=(free_87+free_88+free_85)*free_108 && (free_87+free_88+free_85)*free_108+free_108>=1+free_86 && free_108>=free_102 && free_86>=(free_87+free_88+free_85)*free_105 && (free_87+free_88+free_85)*free_105+free_105>=1+free_86 && free_102>=free_105 && free_79>=(free_87+free_88+free_85)*free_106 && free_106+(free_87+free_88+free_85)*free_106>=1+free_79 && free_106>=free_104 && free_79>=(free_87+free_88+free_85)*free_107 && free_107+(free_87+free_88+free_85)*free_107>=1+free_79 && free_104>=free_107 && free_87+free_88+free_85>=1 && free_78>=free_109*(free_87+free_88+free_85) && free_109+free_109*(free_87+free_88+free_85)>=1+free_78 && free_109>=free_103 && free_78>=(free_87+free_88+free_85)*free_110 && (free_87+free_88+free_85)*free_110+free_110>=1+free_78 && free_103>=free_110 ], cost: 3 208: f132 -> f148 : D'=0, R'=free_80, S'=free_81, D1'=free_86, R1'=free_87, S1'=free_88, T1'=free_85, [ Q1_1>=1+C1 && A>=1+Q1_1 && A>=2+Q1_1 && free_87+free_88+free_85==0 ], cost: 3 70: f132 -> f41 : [ Q1_1>=A ], cost: 1 226: [29] -> f132 : H'=1+A, R'=free_198*D+O*free_199, Q1_1'=A, Y1'=A, [ Q>=1+A && 2+Q1_1>=A && A>=H && 1+Q1_1==A && 1+A>=1+A ], cost: 3-H+A 227: [29] -> f132 : H'=1+A, R'=free_201*D+free_200*V+O*free_202, Q1_1'=1+Q1_1, Y1'=A, [ Q>=1+A && 2+Q1_1>=A && A>=2+Q1_1 && A>=H && 1+A>=1+A ], cost: 3-H+A 228: [29] -> f132 : H'=1+A, R'=V*free_203+free_204*D+O*free_205, Q1_1'=1+Q1_1, Y1'=A, [ Q>=1+A && 2+Q1_1>=A && Q1_1>=A && A>=H && 1+A>=1+A ], cost: 3-H+A 229: [29] -> f132 : H'=4+Q1_1, R'=free_201*D+free_200*V+O*free_202, Q1_1'=1+Q1_1, Y1'=3+Q1_1, [ Q>=1+A && A>=3+Q1_1 && A>=2+Q1_1 && 3+Q1_1>=H && 4+Q1_1>=4+Q1_1 ], cost: 6-H+Q1_1 Aborted due to lack of remaining time Final control flow graph problem, now checking costs for infinitely many models: Start location: f2 30: f77 -> f80 : C'=20, Q_1'=Q_1+D, [ C==20 ], cost: 1 33: f77 -> f93 : C'=1+C, [ 19>=C ], cost: 1 34: f77 -> f93 : C'=1+C, [ C>=21 ], cost: 1 127: f148 -> f132 : E'=0, Q1_1'=1+Q1_1, U1'=free_112, V1'=free_111, [ R>=0 && free_111==0 ], cost: 2 130: f148 -> f132 : E'=0, Q1_1'=1+Q1_1, W1'=free_114, X1'=free_113, [ 0>=1+R && -free_113==0 ], cost: 2 211: f148 -> [29] : D'=free_118, E'=free_111, Q'=1+A, O'=free_119, R'=free_191*free_116+free_190, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=-1+A, U1'=free_112, V1'=free_111, [ R>=0 && 0>=1+free_111 && D1>=R*free_120+free_111*free_120 && R*free_120+free_120+free_111*free_120>=1+D1 && free_120>=free_115 && D1>=free_111*free_122+R*free_122 && free_122+free_111*free_122+R*free_122>=1+D1 && free_115>=free_122 && D1>=free_111*free_126 && free_126+free_111*free_126>=1+D1 && free_126>=free_117 && D1>=free_111*free_128 && free_128+free_111*free_128>=1+D1 && free_117>=free_128 && S>=free_111*free_121+free_121*R && free_121+free_111*free_121+free_121*R>=1+S && free_121>=free_116 && S>=free_111*free_124+free_124*R && free_124+free_111*free_124+free_124*R>=1+S && free_116>=free_124 && free_111+R>=free_111*free_127 && free_127+free_111*free_127>=1+free_111+R && free_127>=free_118 && free_111+R>=free_111*free_123 && free_111*free_123+free_123>=1+free_111+R && free_118>=free_123 && S>=free_111*free_125 && free_125+free_111*free_125>=1+S && free_125>=free_119 && S>=free_111*free_129 && free_111*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=Q && 1+B==A ], cost: 4-Q+A 212: f148 -> [29] : D'=free_118, E'=free_111, Q'=1+A, O'=free_119, R'=free_194*free_116+free_115*free_192+free_193, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=B, U1'=free_112, V1'=free_111, [ R>=0 && 0>=1+free_111 && D1>=R*free_120+free_111*free_120 && R*free_120+free_120+free_111*free_120>=1+D1 && free_120>=free_115 && D1>=free_111*free_122+R*free_122 && free_122+free_111*free_122+R*free_122>=1+D1 && free_115>=free_122 && D1>=free_111*free_126 && free_126+free_111*free_126>=1+D1 && free_126>=free_117 && D1>=free_111*free_128 && free_128+free_111*free_128>=1+D1 && free_117>=free_128 && S>=free_111*free_121+free_121*R && free_121+free_111*free_121+free_121*R>=1+S && free_121>=free_116 && S>=free_111*free_124+free_124*R && free_124+free_111*free_124+free_124*R>=1+S && free_116>=free_124 && free_111+R>=free_111*free_127 && free_127+free_111*free_127>=1+free_111+R && free_127>=free_118 && free_111+R>=free_111*free_123 && free_111*free_123+free_123>=1+free_111+R && free_118>=free_123 && S>=free_111*free_125 && free_125+free_111*free_125>=1+S && free_125>=free_119 && S>=free_111*free_129 && free_111*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=2+B && A>=Q ], cost: 4-Q+A 213: f148 -> [29] : D'=free_133, E'=free_111, Q'=1+A, O'=free_134, R'=free_190+free_191*free_131, S'=free_131, V'=free_132, D1'=free_130, Q1_1'=-1+A, U1'=free_112, V1'=free_111, [ R>=0 && 0>=1+free_111 && Q1_1>=1+B && D1>=R*free_135+free_111*free_135 && R*free_135+free_111*free_135+free_135>=1+D1 && free_135>=free_130 && D1>=free_111*free_137+free_137*R && free_111*free_137+free_137+free_137*R>=1+D1 && free_130>=free_137 && D1>=free_111*free_141 && free_141+free_111*free_141>=1+D1 && free_141>=free_132 && D1>=free_111*free_143 && free_111*free_143+free_143>=1+D1 && free_132>=free_143 && S>=R*free_136+free_111*free_136 && R*free_136+free_136+free_111*free_136>=1+S && free_136>=free_131 && S>=R*free_139+free_111*free_139 && R*free_139+free_139+free_111*free_139>=1+S && free_131>=free_139 && free_111+R>=free_111*free_142 && free_111*free_142+free_142>=1+free_111+R && free_142>=free_133 && free_111+R>=free_111*free_138 && free_138+free_111*free_138>=1+free_111+R && free_133>=free_138 && S>=free_111*free_140 && free_140+free_111*free_140>=1+S && free_140>=free_134 && S>=free_111*free_144 && free_111*free_144+free_144>=1+S && free_134>=free_144 && C1==Q1_1 && A>=Q && 1+C1==A ], cost: 4-Q+A 214: f148 -> [29] : D'=free_148, E'=free_111, Q'=1+A, O'=free_149, R'=free_194*free_146+free_145*free_192+free_193, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, U1'=free_112, V1'=free_111, [ R>=0 && 0>=1+free_111 && B>=1+Q1_1 && D1>=free_111*free_150+free_150*R && free_150+free_111*free_150+free_150*R>=1+D1 && free_150>=free_145 && D1>=free_111*free_152+R*free_152 && free_111*free_152+R*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=free_111*free_156 && free_111*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=free_111*free_158 && free_111*free_158+free_158>=1+D1 && free_147>=free_158 && S>=R*free_151+free_111*free_151 && free_151+R*free_151+free_111*free_151>=1+S && free_151>=free_146 && S>=free_154*R+free_111*free_154 && free_154+free_154*R+free_111*free_154>=1+S && free_146>=free_154 && free_111+R>=free_111*free_157 && free_157+free_111*free_157>=1+free_111+R && free_157>=free_148 && free_111+R>=free_111*free_153 && free_111*free_153+free_153>=1+free_111+R && free_148>=free_153 && S>=free_111*free_155 && free_111*free_155+free_155>=1+S && free_155>=free_149 && S>=free_111*free_159 && free_111*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && A>=2+C1 && A>=Q ], cost: 4-Q+A 215: f148 -> [29] : D'=free_148, E'=free_111, Q'=1+A, O'=free_149, R'=free_145*free_195+free_197*free_146+free_196, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, U1'=free_112, V1'=free_111, [ R>=0 && 0>=1+free_111 && B>=1+Q1_1 && D1>=free_111*free_150+free_150*R && free_150+free_111*free_150+free_150*R>=1+D1 && free_150>=free_145 && D1>=free_111*free_152+R*free_152 && free_111*free_152+R*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=free_111*free_156 && free_111*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=free_111*free_158 && free_111*free_158+free_158>=1+D1 && free_147>=free_158 && S>=R*free_151+free_111*free_151 && free_151+R*free_151+free_111*free_151>=1+S && free_151>=free_146 && S>=free_154*R+free_111*free_154 && free_154+free_154*R+free_111*free_154>=1+S && free_146>=free_154 && free_111+R>=free_111*free_157 && free_157+free_111*free_157>=1+free_111+R && free_157>=free_148 && free_111+R>=free_111*free_153 && free_111*free_153+free_153>=1+free_111+R && free_148>=free_153 && S>=free_111*free_155 && free_111*free_155+free_155>=1+S && free_155>=free_149 && S>=free_111*free_159 && free_111*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && C1>=A && A>=Q ], cost: 4-Q+A 216: f148 -> [29] : D'=free_118, E'=free_111, Q'=1+A, O'=free_119, R'=free_191*free_116+free_190, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=-1+A, U1'=free_112, V1'=free_111, [ R>=0 && free_111>=1 && D1>=R*free_120+free_111*free_120 && R*free_120+free_120+free_111*free_120>=1+D1 && free_120>=free_115 && D1>=free_111*free_122+R*free_122 && free_122+free_111*free_122+R*free_122>=1+D1 && free_115>=free_122 && D1>=free_111*free_126 && free_126+free_111*free_126>=1+D1 && free_126>=free_117 && D1>=free_111*free_128 && free_128+free_111*free_128>=1+D1 && free_117>=free_128 && S>=free_111*free_121+free_121*R && free_121+free_111*free_121+free_121*R>=1+S && free_121>=free_116 && S>=free_111*free_124+free_124*R && free_124+free_111*free_124+free_124*R>=1+S && free_116>=free_124 && free_111+R>=free_111*free_127 && free_127+free_111*free_127>=1+free_111+R && free_127>=free_118 && free_111+R>=free_111*free_123 && free_111*free_123+free_123>=1+free_111+R && free_118>=free_123 && S>=free_111*free_125 && free_125+free_111*free_125>=1+S && free_125>=free_119 && S>=free_111*free_129 && free_111*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=Q && 1+B==A ], cost: 4-Q+A 217: f148 -> [29] : D'=free_118, E'=free_111, Q'=1+A, O'=free_119, R'=free_194*free_116+free_115*free_192+free_193, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=B, U1'=free_112, V1'=free_111, [ R>=0 && free_111>=1 && D1>=R*free_120+free_111*free_120 && R*free_120+free_120+free_111*free_120>=1+D1 && free_120>=free_115 && D1>=free_111*free_122+R*free_122 && free_122+free_111*free_122+R*free_122>=1+D1 && free_115>=free_122 && D1>=free_111*free_126 && free_126+free_111*free_126>=1+D1 && free_126>=free_117 && D1>=free_111*free_128 && free_128+free_111*free_128>=1+D1 && free_117>=free_128 && S>=free_111*free_121+free_121*R && free_121+free_111*free_121+free_121*R>=1+S && free_121>=free_116 && S>=free_111*free_124+free_124*R && free_124+free_111*free_124+free_124*R>=1+S && free_116>=free_124 && free_111+R>=free_111*free_127 && free_127+free_111*free_127>=1+free_111+R && free_127>=free_118 && free_111+R>=free_111*free_123 && free_111*free_123+free_123>=1+free_111+R && free_118>=free_123 && S>=free_111*free_125 && free_125+free_111*free_125>=1+S && free_125>=free_119 && S>=free_111*free_129 && free_111*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=2+B && A>=Q ], cost: 4-Q+A 218: f148 -> [29] : D'=free_133, E'=free_111, Q'=1+A, O'=free_134, R'=free_190+free_191*free_131, S'=free_131, V'=free_132, D1'=free_130, Q1_1'=-1+A, U1'=free_112, V1'=free_111, [ R>=0 && free_111>=1 && Q1_1>=1+B && D1>=R*free_135+free_111*free_135 && R*free_135+free_111*free_135+free_135>=1+D1 && free_135>=free_130 && D1>=free_111*free_137+free_137*R && free_111*free_137+free_137+free_137*R>=1+D1 && free_130>=free_137 && D1>=free_111*free_141 && free_141+free_111*free_141>=1+D1 && free_141>=free_132 && D1>=free_111*free_143 && free_111*free_143+free_143>=1+D1 && free_132>=free_143 && S>=R*free_136+free_111*free_136 && R*free_136+free_136+free_111*free_136>=1+S && free_136>=free_131 && S>=R*free_139+free_111*free_139 && R*free_139+free_139+free_111*free_139>=1+S && free_131>=free_139 && free_111+R>=free_111*free_142 && free_111*free_142+free_142>=1+free_111+R && free_142>=free_133 && free_111+R>=free_111*free_138 && free_138+free_111*free_138>=1+free_111+R && free_133>=free_138 && S>=free_111*free_140 && free_140+free_111*free_140>=1+S && free_140>=free_134 && S>=free_111*free_144 && free_111*free_144+free_144>=1+S && free_134>=free_144 && C1==Q1_1 && A>=Q && 1+C1==A ], cost: 4-Q+A 219: f148 -> [29] : D'=free_148, E'=free_111, Q'=1+A, O'=free_149, R'=free_194*free_146+free_145*free_192+free_193, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, U1'=free_112, V1'=free_111, [ R>=0 && free_111>=1 && B>=1+Q1_1 && D1>=free_111*free_150+free_150*R && free_150+free_111*free_150+free_150*R>=1+D1 && free_150>=free_145 && D1>=free_111*free_152+R*free_152 && free_111*free_152+R*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=free_111*free_156 && free_111*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=free_111*free_158 && free_111*free_158+free_158>=1+D1 && free_147>=free_158 && S>=R*free_151+free_111*free_151 && free_151+R*free_151+free_111*free_151>=1+S && free_151>=free_146 && S>=free_154*R+free_111*free_154 && free_154+free_154*R+free_111*free_154>=1+S && free_146>=free_154 && free_111+R>=free_111*free_157 && free_157+free_111*free_157>=1+free_111+R && free_157>=free_148 && free_111+R>=free_111*free_153 && free_111*free_153+free_153>=1+free_111+R && free_148>=free_153 && S>=free_111*free_155 && free_111*free_155+free_155>=1+S && free_155>=free_149 && S>=free_111*free_159 && free_111*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && A>=2+C1 && A>=Q ], cost: 4-Q+A 220: f148 -> [29] : D'=free_148, E'=free_111, Q'=1+A, O'=free_149, R'=free_145*free_195+free_197*free_146+free_196, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, U1'=free_112, V1'=free_111, [ R>=0 && free_111>=1 && B>=1+Q1_1 && D1>=free_111*free_150+free_150*R && free_150+free_111*free_150+free_150*R>=1+D1 && free_150>=free_145 && D1>=free_111*free_152+R*free_152 && free_111*free_152+R*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=free_111*free_156 && free_111*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=free_111*free_158 && free_111*free_158+free_158>=1+D1 && free_147>=free_158 && S>=R*free_151+free_111*free_151 && free_151+R*free_151+free_111*free_151>=1+S && free_151>=free_146 && S>=free_154*R+free_111*free_154 && free_154+free_154*R+free_111*free_154>=1+S && free_146>=free_154 && free_111+R>=free_111*free_157 && free_157+free_111*free_157>=1+free_111+R && free_157>=free_148 && free_111+R>=free_111*free_153 && free_111*free_153+free_153>=1+free_111+R && free_148>=free_153 && S>=free_111*free_155 && free_111*free_155+free_155>=1+S && free_155>=free_149 && S>=free_111*free_159 && free_111*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && C1>=A && A>=Q ], cost: 4-Q+A 221: f148 -> [29] : D'=free_118, E'=-free_113, Q'=1+A, O'=free_119, R'=free_191*free_116+free_190, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=-1+A, W1'=free_114, X1'=free_113, [ 0>=1+R && 0>=1-free_113 && D1>=-free_113*free_120+R*free_120 && -free_113*free_120+R*free_120+free_120>=1+D1 && free_120>=free_115 && D1>=-free_122*free_113+R*free_122 && free_122-free_122*free_113+R*free_122>=1+D1 && free_115>=free_122 && D1>=-free_113*free_126 && -free_113*free_126+free_126>=1+D1 && free_126>=free_117 && D1>=-free_128*free_113 && free_128-free_128*free_113>=1+D1 && free_117>=free_128 && S>=-free_121*free_113+free_121*R && free_121-free_121*free_113+free_121*R>=1+S && free_121>=free_116 && S>=-free_124*free_113+free_124*R && free_124-free_124*free_113+free_124*R>=1+S && free_116>=free_124 && R-free_113>=-free_127*free_113 && free_127-free_127*free_113>=1+R-free_113 && free_127>=free_118 && R-free_113>=-free_113*free_123 && -free_113*free_123+free_123>=1+R-free_113 && free_118>=free_123 && S>=-free_125*free_113 && -free_125*free_113+free_125>=1+S && free_125>=free_119 && S>=-free_113*free_129 && -free_113*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=Q && 1+B==A ], cost: 4-Q+A 222: f148 -> [29] : D'=free_118, E'=-free_113, Q'=1+A, O'=free_119, R'=free_194*free_116+free_115*free_192+free_193, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=B, W1'=free_114, X1'=free_113, [ 0>=1+R && 0>=1-free_113 && D1>=-free_113*free_120+R*free_120 && -free_113*free_120+R*free_120+free_120>=1+D1 && free_120>=free_115 && D1>=-free_122*free_113+R*free_122 && free_122-free_122*free_113+R*free_122>=1+D1 && free_115>=free_122 && D1>=-free_113*free_126 && -free_113*free_126+free_126>=1+D1 && free_126>=free_117 && D1>=-free_128*free_113 && free_128-free_128*free_113>=1+D1 && free_117>=free_128 && S>=-free_121*free_113+free_121*R && free_121-free_121*free_113+free_121*R>=1+S && free_121>=free_116 && S>=-free_124*free_113+free_124*R && free_124-free_124*free_113+free_124*R>=1+S && free_116>=free_124 && R-free_113>=-free_127*free_113 && free_127-free_127*free_113>=1+R-free_113 && free_127>=free_118 && R-free_113>=-free_113*free_123 && -free_113*free_123+free_123>=1+R-free_113 && free_118>=free_123 && S>=-free_125*free_113 && -free_125*free_113+free_125>=1+S && free_125>=free_119 && S>=-free_113*free_129 && -free_113*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=2+B && A>=Q ], cost: 4-Q+A 223: f148 -> [29] : D'=free_133, E'=-free_113, Q'=1+A, O'=free_134, R'=free_190+free_191*free_131, S'=free_131, V'=free_132, D1'=free_130, Q1_1'=-1+A, W1'=free_114, X1'=free_113, [ 0>=1+R && 0>=1-free_113 && Q1_1>=1+B && D1>=R*free_135-free_135*free_113 && R*free_135-free_135*free_113+free_135>=1+D1 && free_135>=free_130 && D1>=free_137*R-free_137*free_113 && free_137+free_137*R-free_137*free_113>=1+D1 && free_130>=free_137 && D1>=-free_141*free_113 && free_141-free_141*free_113>=1+D1 && free_141>=free_132 && D1>=-free_113*free_143 && -free_113*free_143+free_143>=1+D1 && free_132>=free_143 && S>=-free_113*free_136+R*free_136 && -free_113*free_136+R*free_136+free_136>=1+S && free_136>=free_131 && S>=-free_113*free_139+R*free_139 && -free_113*free_139+R*free_139+free_139>=1+S && free_131>=free_139 && R-free_113>=-free_142*free_113 && -free_142*free_113+free_142>=1+R-free_113 && free_142>=free_133 && R-free_113>=-free_138*free_113 && free_138-free_138*free_113>=1+R-free_113 && free_133>=free_138 && S>=-free_140*free_113 && free_140-free_140*free_113>=1+S && free_140>=free_134 && S>=-free_144*free_113 && free_144-free_144*free_113>=1+S && free_134>=free_144 && C1==Q1_1 && A>=Q && 1+C1==A ], cost: 4-Q+A 224: f148 -> [29] : D'=free_148, E'=-free_113, Q'=1+A, O'=free_149, R'=free_194*free_146+free_145*free_192+free_193, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, W1'=free_114, X1'=free_113, [ 0>=1+R && 0>=1-free_113 && B>=1+Q1_1 && D1>=-free_150*free_113+free_150*R && free_150-free_150*free_113+free_150*R>=1+D1 && free_150>=free_145 && D1>=R*free_152-free_113*free_152 && R*free_152-free_113*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=-free_113*free_156 && -free_113*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=-free_113*free_158 && -free_113*free_158+free_158>=1+D1 && free_147>=free_158 && S>=-free_151*free_113+R*free_151 && free_151-free_151*free_113+R*free_151>=1+S && free_151>=free_146 && S>=-free_154*free_113+free_154*R && -free_154*free_113+free_154+free_154*R>=1+S && free_146>=free_154 && R-free_113>=-free_157*free_113 && free_157-free_157*free_113>=1+R-free_113 && free_157>=free_148 && R-free_113>=-free_113*free_153 && -free_113*free_153+free_153>=1+R-free_113 && free_148>=free_153 && S>=-free_155*free_113 && -free_155*free_113+free_155>=1+S && free_155>=free_149 && S>=-free_113*free_159 && -free_113*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && A>=2+C1 && A>=Q ], cost: 4-Q+A 225: f148 -> [29] : D'=free_148, E'=-free_113, Q'=1+A, O'=free_149, R'=free_145*free_195+free_197*free_146+free_196, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, W1'=free_114, X1'=free_113, [ 0>=1+R && 0>=1-free_113 && B>=1+Q1_1 && D1>=-free_150*free_113+free_150*R && free_150-free_150*free_113+free_150*R>=1+D1 && free_150>=free_145 && D1>=R*free_152-free_113*free_152 && R*free_152-free_113*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=-free_113*free_156 && -free_113*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=-free_113*free_158 && -free_113*free_158+free_158>=1+D1 && free_147>=free_158 && S>=-free_151*free_113+R*free_151 && free_151-free_151*free_113+R*free_151>=1+S && free_151>=free_146 && S>=-free_154*free_113+free_154*R && -free_154*free_113+free_154+free_154*R>=1+S && free_146>=free_154 && R-free_113>=-free_157*free_113 && free_157-free_157*free_113>=1+R-free_113 && free_157>=free_148 && R-free_113>=-free_113*free_153 && -free_113*free_153+free_153>=1+R-free_113 && free_148>=free_153 && S>=-free_155*free_113 && -free_155*free_113+free_155>=1+S && free_155>=free_149 && S>=-free_113*free_159 && -free_113*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && C1>=A && A>=Q ], cost: 4-Q+A 158: f2 -> f18 : A'=G, F'=-(-1+Q-G)*free, H'=1+H, Q'=1+G, J'=free, Q_1'=0, [ G>=H && G>=Q && 1+H>=1+G ], cost: 5-Q+G 159: f2 -> f18 : A'=G, F'=0, Q_1'=0, [ H>=1+G ], cost: 2 12: f18 -> f23 : C'=0, [ A>=1 ], cost: 1 160: f23 -> f34 : B'=1, E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 && 0>=1+free_1 && 1>=1 ], cost: -1+2*B 164: f23 -> f34 : B'=1, E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 && free_1>=1 && 1>=1 ], cost: -1+2*B 168: f23 -> f34 : B'=1, E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 && 0>=1+free_4 && 1>=1 ], cost: -1+2*B 172: f23 -> f34 : B'=1, E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 && free_4>=1 && 1>=1 ], cost: -1+2*B 176: f23 -> f34 : B'=1, E'=F, K'=-free_7, L'=free_7, M'=free_8, [ B>=2 && free_8>=1 && 1>=1 ], cost: -1+2*B 161: f23 -> [34] : B'=1, E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 && 0>=1+free_1 ], cost: -2+2*B 162: f23 -> [35] : B'=1, E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 && 0>=1+free_1 ], cost: -2+2*B 163: f23 -> [36] : B'=1, E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 && 0>=1+free_1 ], cost: -2+2*B 165: f23 -> [37] : B'=1, E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 && free_1>=1 ], cost: -2+2*B 166: f23 -> [38] : B'=1, E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 && free_1>=1 ], cost: -2+2*B 167: f23 -> [39] : B'=1, E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 && free_1>=1 ], cost: -2+2*B 169: f23 -> [40] : B'=1, E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 && 0>=1+free_4 ], cost: -2+2*B 170: f23 -> [41] : B'=1, E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 && 0>=1+free_4 ], cost: -2+2*B 171: f23 -> [42] : B'=1, E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 && 0>=1+free_4 ], cost: -2+2*B 173: f23 -> [43] : B'=1, E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 && free_4>=1 ], cost: -2+2*B 174: f23 -> [44] : B'=1, E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 && free_4>=1 ], cost: -2+2*B 175: f23 -> [45] : B'=1, E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 && free_4>=1 ], cost: -2+2*B 177: f23 -> [46] : B'=1, E'=F, K'=-free_7, L'=free_7, M'=free_8, [ B>=2 && free_8>=1 ], cost: -2+2*B 178: f23 -> [47] : B'=1, E'=F, K'=-free_7, L'=free_7, M'=free_8, [ B>=2 && free_8>=1 ], cost: -2+2*B 179: f23 -> [48] : B'=1, E'=F, K'=-free_7, L'=free_7, M'=free_8, [ B>=2 && free_8>=1 ], cost: -2+2*B 180: f34 -> f77 : D'=free_12, O'=free_13, P'=free_10*free_11, [ A>=1+B && A>=2+B && 29>=C && 9>=C ], cost: 4 181: f34 -> f77 : D'=free_12, O'=free_13, P'=free_10*free_11, [ A>=1+B && A>=2+B && 29>=C && C>=11 ], cost: 4 183: f34 -> f77 : C'=30, D'=free_12, O'=free_13, P'=free_10*free_11, [ A>=1+B && A>=2+B && C==30 && 30>=11 ], cost: 4 185: f34 -> f77 : D'=free_16, O'=free_17, P'=free_14*free_15, [ B>=1+A && B>=A && 29>=C && 9>=C ], cost: 4 186: f34 -> f77 : D'=free_16, O'=free_17, P'=free_14*free_15, [ B>=1+A && B>=A && 29>=C && C>=11 ], cost: 4 20: f34 -> f41 : A'=-1+A, B'=A, D'=free_9, N'=A, [ A==B ], cost: 1 105: f34 -> f41 : A'=-2+A, B'=-1+A, D'=Q_1+free_12, J'=free_24, O'=free_13, P'=free_10*free_11, R'=-2*free_12+2*free_13, S'=-8*free_12*free_13+4*free_13^2+4*free_12^2+free_10*free_11, T'=free_25, U'=free_24, V'=free_24, B1'=Q_1-free_12+2*free_13, [ A>=1+B && 8*free_12*free_13>=1+4*free_13^2+4*free_12^2+free_10*free_11 && 1+B==A ], cost: 2 191: f34 -> f41 : A'=-2+A, B'=-1+A, D'=Q_1+free_12, J'=-2*free_12+2*free_13, O'=free_13, P'=free_10*free_11, R'=-2*free_12+2*free_13, S'=-8*free_12*free_13+4*free_13^2+4*free_12^2+free_10*free_11, T'=free_19, U'=free_20, V'=free_18-2*free_12+2*free_13, W'=free_18, X'=free_18, Y'=Q_1+free_18-free_12+2*free_13, A1'=0, [ A>=1+B && 4*free_13^2+4*free_12^2+free_10*free_11>=8*free_12*free_13 && 2*free_13>=2*free_12 && 1+B==A && 0>=1+free_18-2*free_12+2*free_13 ], cost: 3 192: f34 -> f41 : A'=-2+A, B'=-1+A, D'=Q_1+free_12, J'=-2*free_12+2*free_13, O'=free_13, P'=free_10*free_11, R'=-2*free_12+2*free_13, S'=-8*free_12*free_13+4*free_13^2+4*free_12^2+free_10*free_11, T'=free_19, U'=free_20, V'=free_18-2*free_12+2*free_13, W'=free_18, X'=free_18, Y'=Q_1+free_18-free_12+2*free_13, A1'=0, [ A>=1+B && 4*free_13^2+4*free_12^2+free_10*free_11>=8*free_12*free_13 && 2*free_13>=2*free_12 && 1+B==A && free_18-2*free_12+2*free_13>=1 ], cost: 3 193: f34 -> f41 : A'=-2+A, B'=-1+A, D'=Q_1+free_12, J'=-2*free_12+2*free_13, O'=free_13, P'=free_10*free_11, R'=-2*free_12+2*free_13, S'=-8*free_12*free_13+4*free_13^2+4*free_12^2+free_10*free_11, T'=free_22, U'=free_23, V'=0, X'=-free_21, Y'=Q_1-free_21-free_12+2*free_13, Z'=free_21, A1'=0, [ A>=1+B && 4*free_13^2+4*free_12^2+free_10*free_11>=8*free_12*free_13 && 2*free_12>=1+2*free_13 && 1+B==A && -free_21-2*free_12+2*free_13==0 ], cost: 3 184: f34 -> f80 : C'=10, D'=free_12, O'=free_13, P'=free_10*free_11, Q_1'=Q_1+free_12, [ A>=1+B && A>=2+B && 29>=C && C==10 ], cost: 4 189: f34 -> f80 : C'=10, D'=free_16, O'=free_17, P'=free_14*free_15, Q_1'=Q_1+free_16, [ B>=1+A && B>=A && 29>=C && C==10 ], cost: 4 65: f41 -> f18 : [ C>=31 && A>=2+B ], cost: 1 66: f41 -> f18 : [ 1+B>=A ], cost: 1 64: f41 -> f23 : [ 30>=C && A>=2+B ], cost: 1 80: f80 -> f93 : C'=1+C, D'=3*free_226, E'=4*free_226, H'=1+A, J'=free_226, O'=3*free_226, P'=free_225, Z1'=4*free_226-free_227, A2'=free_227, [ A>=H && 1+A>=1+A ], cost: 2-H+A 196: f93 -> f124 : E'=free_207+free_211+free_212, R'=free_210, S'=free_206, V'=free_208, C1'=B, D1'=free_209, E1'=free_211, F1'=free_212, G1'=free_207, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && 0>=1+free_55*free_62+free_65*free_62 && free_223>=free_212*free_219+free_211*free_219+free_207*free_219 && free_212*free_219+free_211*free_219+free_207*free_219+free_219>=1+free_223 && free_219>=free_209 && free_223>=free_212*free_213+free_207*free_213+free_211*free_213 && free_212*free_213+free_207*free_213+free_211*free_213+free_213>=1+free_223 && free_209>=free_213 && free_208^2+O*D>=O*free_208+free_208*D+P+free_222*free_216 && O*free_208+free_208*D+P+free_216+free_222*free_216>=1+free_208^2+O*D && free_218+free_216>=free_214*free_212+free_207*free_214+free_214*free_211 && free_214*free_212+free_214+free_207*free_214+free_214*free_211>=1+free_218+free_216 && free_214>=free_210 && free_208^2+O*D>=O*free_208+free_224*free_222+free_208*D+P && O*free_208+free_224*free_222+free_208*D+free_224+P>=1+free_208^2+O*D && free_224+free_218>=free_207*free_220+free_220*free_211+free_220*free_212 && free_220+free_207*free_220+free_220*free_211+free_220*free_212>=1+free_224+free_218 && free_210>=free_220 && free_208+free_221>=free_217*free_211+free_207*free_217+O+free_217*free_212+D && free_217*free_211+free_217+free_207*free_217+O+free_217*free_212+D>=1+free_208+free_221 && free_217>=free_206 && free_208+free_221>=free_211*free_215+free_207*free_215+free_215*free_212+O+D && free_211*free_215+free_207*free_215+free_215*free_212+O+free_215+D>=1+free_208+free_221 && free_206>=free_215 && B==-1+C1 ], cost: 3 197: f93 -> f124 : E'=free_59+free_53+free_63, R'=free_58, S'=free_52, V'=free_54, C1'=-1+C1, D1'=free_56, E1'=free_59, F1'=free_63, G1'=free_53, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && 0>=1+free_55*free_62+free_65*free_62 && free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && -1+C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 ], cost: 4 198: f93 -> f124 : E'=free_207+free_211+free_212, R'=free_210, S'=free_206, V'=free_208, C1'=B, D1'=free_209, E1'=free_211, F1'=free_212, G1'=free_207, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_55*free_62+free_65*free_62>=1 && free_223>=free_212*free_219+free_211*free_219+free_207*free_219 && free_212*free_219+free_211*free_219+free_207*free_219+free_219>=1+free_223 && free_219>=free_209 && free_223>=free_212*free_213+free_207*free_213+free_211*free_213 && free_212*free_213+free_207*free_213+free_211*free_213+free_213>=1+free_223 && free_209>=free_213 && free_208^2+O*D>=O*free_208+free_208*D+P+free_222*free_216 && O*free_208+free_208*D+P+free_216+free_222*free_216>=1+free_208^2+O*D && free_218+free_216>=free_214*free_212+free_207*free_214+free_214*free_211 && free_214*free_212+free_214+free_207*free_214+free_214*free_211>=1+free_218+free_216 && free_214>=free_210 && free_208^2+O*D>=O*free_208+free_224*free_222+free_208*D+P && O*free_208+free_224*free_222+free_208*D+free_224+P>=1+free_208^2+O*D && free_224+free_218>=free_207*free_220+free_220*free_211+free_220*free_212 && free_220+free_207*free_220+free_220*free_211+free_220*free_212>=1+free_224+free_218 && free_210>=free_220 && free_208+free_221>=free_217*free_211+free_207*free_217+O+free_217*free_212+D && free_217*free_211+free_217+free_207*free_217+O+free_217*free_212+D>=1+free_208+free_221 && free_217>=free_206 && free_208+free_221>=free_211*free_215+free_207*free_215+free_215*free_212+O+D && free_211*free_215+free_207*free_215+free_215*free_212+O+free_215+D>=1+free_208+free_221 && free_206>=free_215 && B==-1+C1 ], cost: 3 199: f93 -> f124 : E'=free_59+free_53+free_63, R'=free_58, S'=free_52, V'=free_54, C1'=-1+C1, D1'=free_56, E1'=free_59, F1'=free_63, G1'=free_53, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_55*free_62+free_65*free_62>=1 && free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && -1+C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 ], cost: 4 200: f93 -> f124 : [ B>=1+C1 ], cost: 1 117: f124 -> f132 : H'=3+C1, [ A>=2+C1 && H==2+C1 && 3+C1>=1+A ], cost: 4-H+C1 118: f124 -> f132 : H'=1+H, [ 1+C1>=H && A>=H && 1+H>=1+A ], cost: 2 119: f124 -> f132 : H'=1+A, [ H>=3+C1 && A>=H && 1+A>=1+A ], cost: 2-H+A 120: f124 -> f132 : [ H>=1+A ], cost: 1 42: f132 -> f148 : Q1_1'=C1, [ A>=1+Q1_1 && C1==Q1_1 ], cost: 1 203: f132 -> f148 : D'=0, R'=free_78, S'=free_79, D1'=0, Q1_1'=-1+A, R1'=free_83, S1'=free_84, T1'=free_82, [ C1>=1+Q1_1 && A>=1+Q1_1 && 1+Q1_1==A && free_84+free_82+free_83==0 ], cost: 3 205: f132 -> f148 : D'=free_87+free_88+free_85, R'=free_94, S'=free_95, D1'=free_93, R1'=free_87, S1'=free_88, T1'=free_85, [ C1>=1+Q1_1 && A>=1+Q1_1 && A>=2+Q1_1 && free_86>=(free_87+free_88+free_85)*free_99 && (free_87+free_88+free_85)*free_99+free_99>=1+free_86 && free_99>=free_93 && free_86>=free_96*(free_87+free_88+free_85) && free_96+free_96*(free_87+free_88+free_85)>=1+free_86 && free_93>=free_96 && free_79>=(free_87+free_88+free_85)*free_97 && free_97+(free_87+free_88+free_85)*free_97>=1+free_79 && free_97>=free_95 && free_79>=(free_87+free_88+free_85)*free_98 && (free_87+free_88+free_85)*free_98+free_98>=1+free_79 && free_95>=free_98 && 0>=1+free_87+free_88+free_85 && free_78>=(free_87+free_88+free_85)*free_100 && free_100+(free_87+free_88+free_85)*free_100>=1+free_78 && free_100>=free_94 && free_78>=(free_87+free_88+free_85)*free_101 && (free_87+free_88+free_85)*free_101+free_101>=1+free_78 && free_94>=free_101 ], cost: 3 206: f132 -> f148 : D'=free_87+free_88+free_85, R'=free_103, S'=free_104, D1'=free_102, R1'=free_87, S1'=free_88, T1'=free_85, [ C1>=1+Q1_1 && A>=1+Q1_1 && A>=2+Q1_1 && free_86>=(free_87+free_88+free_85)*free_108 && (free_87+free_88+free_85)*free_108+free_108>=1+free_86 && free_108>=free_102 && free_86>=(free_87+free_88+free_85)*free_105 && (free_87+free_88+free_85)*free_105+free_105>=1+free_86 && free_102>=free_105 && free_79>=(free_87+free_88+free_85)*free_106 && free_106+(free_87+free_88+free_85)*free_106>=1+free_79 && free_106>=free_104 && free_79>=(free_87+free_88+free_85)*free_107 && free_107+(free_87+free_88+free_85)*free_107>=1+free_79 && free_104>=free_107 && free_87+free_88+free_85>=1 && free_78>=free_109*(free_87+free_88+free_85) && free_109+free_109*(free_87+free_88+free_85)>=1+free_78 && free_109>=free_103 && free_78>=(free_87+free_88+free_85)*free_110 && (free_87+free_88+free_85)*free_110+free_110>=1+free_78 && free_103>=free_110 ], cost: 3 208: f132 -> f148 : D'=0, R'=free_80, S'=free_81, D1'=free_86, R1'=free_87, S1'=free_88, T1'=free_85, [ Q1_1>=1+C1 && A>=1+Q1_1 && A>=2+Q1_1 && free_87+free_88+free_85==0 ], cost: 3 70: f132 -> f41 : [ Q1_1>=A ], cost: 1 226: [29] -> f132 : H'=1+A, R'=free_198*D+O*free_199, Q1_1'=A, Y1'=A, [ Q>=1+A && 2+Q1_1>=A && A>=H && 1+Q1_1==A && 1+A>=1+A ], cost: 3-H+A 227: [29] -> f132 : H'=1+A, R'=free_201*D+free_200*V+O*free_202, Q1_1'=1+Q1_1, Y1'=A, [ Q>=1+A && 2+Q1_1>=A && A>=2+Q1_1 && A>=H && 1+A>=1+A ], cost: 3-H+A 228: [29] -> f132 : H'=1+A, R'=V*free_203+free_204*D+O*free_205, Q1_1'=1+Q1_1, Y1'=A, [ Q>=1+A && 2+Q1_1>=A && Q1_1>=A && A>=H && 1+A>=1+A ], cost: 3-H+A 229: [29] -> f132 : H'=4+Q1_1, R'=free_201*D+free_200*V+O*free_202, Q1_1'=1+Q1_1, Y1'=3+Q1_1, [ Q>=1+A && A>=3+Q1_1 && A>=2+Q1_1 && 3+Q1_1>=H && 4+Q1_1>=4+Q1_1 ], cost: 6-H+Q1_1 This is only a partial result (probably due to a timeout), trying to find max complexity Removed transitions with const cost Start location: f2 30: f77 -> f80 : C'=20, Q_1'=Q_1+D, [ C==20 ], cost: 1 211: f148 -> [29] : D'=free_118, E'=free_111, Q'=1+A, O'=free_119, R'=free_191*free_116+free_190, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=-1+A, U1'=free_112, V1'=free_111, [ R>=0 && 0>=1+free_111 && D1>=R*free_120+free_111*free_120 && R*free_120+free_120+free_111*free_120>=1+D1 && free_120>=free_115 && D1>=free_111*free_122+R*free_122 && free_122+free_111*free_122+R*free_122>=1+D1 && free_115>=free_122 && D1>=free_111*free_126 && free_126+free_111*free_126>=1+D1 && free_126>=free_117 && D1>=free_111*free_128 && free_128+free_111*free_128>=1+D1 && free_117>=free_128 && S>=free_111*free_121+free_121*R && free_121+free_111*free_121+free_121*R>=1+S && free_121>=free_116 && S>=free_111*free_124+free_124*R && free_124+free_111*free_124+free_124*R>=1+S && free_116>=free_124 && free_111+R>=free_111*free_127 && free_127+free_111*free_127>=1+free_111+R && free_127>=free_118 && free_111+R>=free_111*free_123 && free_111*free_123+free_123>=1+free_111+R && free_118>=free_123 && S>=free_111*free_125 && free_125+free_111*free_125>=1+S && free_125>=free_119 && S>=free_111*free_129 && free_111*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=Q && 1+B==A ], cost: 4-Q+A 212: f148 -> [29] : D'=free_118, E'=free_111, Q'=1+A, O'=free_119, R'=free_194*free_116+free_115*free_192+free_193, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=B, U1'=free_112, V1'=free_111, [ R>=0 && 0>=1+free_111 && D1>=R*free_120+free_111*free_120 && R*free_120+free_120+free_111*free_120>=1+D1 && free_120>=free_115 && D1>=free_111*free_122+R*free_122 && free_122+free_111*free_122+R*free_122>=1+D1 && free_115>=free_122 && D1>=free_111*free_126 && free_126+free_111*free_126>=1+D1 && free_126>=free_117 && D1>=free_111*free_128 && free_128+free_111*free_128>=1+D1 && free_117>=free_128 && S>=free_111*free_121+free_121*R && free_121+free_111*free_121+free_121*R>=1+S && free_121>=free_116 && S>=free_111*free_124+free_124*R && free_124+free_111*free_124+free_124*R>=1+S && free_116>=free_124 && free_111+R>=free_111*free_127 && free_127+free_111*free_127>=1+free_111+R && free_127>=free_118 && free_111+R>=free_111*free_123 && free_111*free_123+free_123>=1+free_111+R && free_118>=free_123 && S>=free_111*free_125 && free_125+free_111*free_125>=1+S && free_125>=free_119 && S>=free_111*free_129 && free_111*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=2+B && A>=Q ], cost: 4-Q+A 213: f148 -> [29] : D'=free_133, E'=free_111, Q'=1+A, O'=free_134, R'=free_190+free_191*free_131, S'=free_131, V'=free_132, D1'=free_130, Q1_1'=-1+A, U1'=free_112, V1'=free_111, [ R>=0 && 0>=1+free_111 && Q1_1>=1+B && D1>=R*free_135+free_111*free_135 && R*free_135+free_111*free_135+free_135>=1+D1 && free_135>=free_130 && D1>=free_111*free_137+free_137*R && free_111*free_137+free_137+free_137*R>=1+D1 && free_130>=free_137 && D1>=free_111*free_141 && free_141+free_111*free_141>=1+D1 && free_141>=free_132 && D1>=free_111*free_143 && free_111*free_143+free_143>=1+D1 && free_132>=free_143 && S>=R*free_136+free_111*free_136 && R*free_136+free_136+free_111*free_136>=1+S && free_136>=free_131 && S>=R*free_139+free_111*free_139 && R*free_139+free_139+free_111*free_139>=1+S && free_131>=free_139 && free_111+R>=free_111*free_142 && free_111*free_142+free_142>=1+free_111+R && free_142>=free_133 && free_111+R>=free_111*free_138 && free_138+free_111*free_138>=1+free_111+R && free_133>=free_138 && S>=free_111*free_140 && free_140+free_111*free_140>=1+S && free_140>=free_134 && S>=free_111*free_144 && free_111*free_144+free_144>=1+S && free_134>=free_144 && C1==Q1_1 && A>=Q && 1+C1==A ], cost: 4-Q+A 214: f148 -> [29] : D'=free_148, E'=free_111, Q'=1+A, O'=free_149, R'=free_194*free_146+free_145*free_192+free_193, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, U1'=free_112, V1'=free_111, [ R>=0 && 0>=1+free_111 && B>=1+Q1_1 && D1>=free_111*free_150+free_150*R && free_150+free_111*free_150+free_150*R>=1+D1 && free_150>=free_145 && D1>=free_111*free_152+R*free_152 && free_111*free_152+R*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=free_111*free_156 && free_111*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=free_111*free_158 && free_111*free_158+free_158>=1+D1 && free_147>=free_158 && S>=R*free_151+free_111*free_151 && free_151+R*free_151+free_111*free_151>=1+S && free_151>=free_146 && S>=free_154*R+free_111*free_154 && free_154+free_154*R+free_111*free_154>=1+S && free_146>=free_154 && free_111+R>=free_111*free_157 && free_157+free_111*free_157>=1+free_111+R && free_157>=free_148 && free_111+R>=free_111*free_153 && free_111*free_153+free_153>=1+free_111+R && free_148>=free_153 && S>=free_111*free_155 && free_111*free_155+free_155>=1+S && free_155>=free_149 && S>=free_111*free_159 && free_111*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && A>=2+C1 && A>=Q ], cost: 4-Q+A 215: f148 -> [29] : D'=free_148, E'=free_111, Q'=1+A, O'=free_149, R'=free_145*free_195+free_197*free_146+free_196, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, U1'=free_112, V1'=free_111, [ R>=0 && 0>=1+free_111 && B>=1+Q1_1 && D1>=free_111*free_150+free_150*R && free_150+free_111*free_150+free_150*R>=1+D1 && free_150>=free_145 && D1>=free_111*free_152+R*free_152 && free_111*free_152+R*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=free_111*free_156 && free_111*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=free_111*free_158 && free_111*free_158+free_158>=1+D1 && free_147>=free_158 && S>=R*free_151+free_111*free_151 && free_151+R*free_151+free_111*free_151>=1+S && free_151>=free_146 && S>=free_154*R+free_111*free_154 && free_154+free_154*R+free_111*free_154>=1+S && free_146>=free_154 && free_111+R>=free_111*free_157 && free_157+free_111*free_157>=1+free_111+R && free_157>=free_148 && free_111+R>=free_111*free_153 && free_111*free_153+free_153>=1+free_111+R && free_148>=free_153 && S>=free_111*free_155 && free_111*free_155+free_155>=1+S && free_155>=free_149 && S>=free_111*free_159 && free_111*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && C1>=A && A>=Q ], cost: 4-Q+A 216: f148 -> [29] : D'=free_118, E'=free_111, Q'=1+A, O'=free_119, R'=free_191*free_116+free_190, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=-1+A, U1'=free_112, V1'=free_111, [ R>=0 && free_111>=1 && D1>=R*free_120+free_111*free_120 && R*free_120+free_120+free_111*free_120>=1+D1 && free_120>=free_115 && D1>=free_111*free_122+R*free_122 && free_122+free_111*free_122+R*free_122>=1+D1 && free_115>=free_122 && D1>=free_111*free_126 && free_126+free_111*free_126>=1+D1 && free_126>=free_117 && D1>=free_111*free_128 && free_128+free_111*free_128>=1+D1 && free_117>=free_128 && S>=free_111*free_121+free_121*R && free_121+free_111*free_121+free_121*R>=1+S && free_121>=free_116 && S>=free_111*free_124+free_124*R && free_124+free_111*free_124+free_124*R>=1+S && free_116>=free_124 && free_111+R>=free_111*free_127 && free_127+free_111*free_127>=1+free_111+R && free_127>=free_118 && free_111+R>=free_111*free_123 && free_111*free_123+free_123>=1+free_111+R && free_118>=free_123 && S>=free_111*free_125 && free_125+free_111*free_125>=1+S && free_125>=free_119 && S>=free_111*free_129 && free_111*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=Q && 1+B==A ], cost: 4-Q+A 217: f148 -> [29] : D'=free_118, E'=free_111, Q'=1+A, O'=free_119, R'=free_194*free_116+free_115*free_192+free_193, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=B, U1'=free_112, V1'=free_111, [ R>=0 && free_111>=1 && D1>=R*free_120+free_111*free_120 && R*free_120+free_120+free_111*free_120>=1+D1 && free_120>=free_115 && D1>=free_111*free_122+R*free_122 && free_122+free_111*free_122+R*free_122>=1+D1 && free_115>=free_122 && D1>=free_111*free_126 && free_126+free_111*free_126>=1+D1 && free_126>=free_117 && D1>=free_111*free_128 && free_128+free_111*free_128>=1+D1 && free_117>=free_128 && S>=free_111*free_121+free_121*R && free_121+free_111*free_121+free_121*R>=1+S && free_121>=free_116 && S>=free_111*free_124+free_124*R && free_124+free_111*free_124+free_124*R>=1+S && free_116>=free_124 && free_111+R>=free_111*free_127 && free_127+free_111*free_127>=1+free_111+R && free_127>=free_118 && free_111+R>=free_111*free_123 && free_111*free_123+free_123>=1+free_111+R && free_118>=free_123 && S>=free_111*free_125 && free_125+free_111*free_125>=1+S && free_125>=free_119 && S>=free_111*free_129 && free_111*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=2+B && A>=Q ], cost: 4-Q+A 218: f148 -> [29] : D'=free_133, E'=free_111, Q'=1+A, O'=free_134, R'=free_190+free_191*free_131, S'=free_131, V'=free_132, D1'=free_130, Q1_1'=-1+A, U1'=free_112, V1'=free_111, [ R>=0 && free_111>=1 && Q1_1>=1+B && D1>=R*free_135+free_111*free_135 && R*free_135+free_111*free_135+free_135>=1+D1 && free_135>=free_130 && D1>=free_111*free_137+free_137*R && free_111*free_137+free_137+free_137*R>=1+D1 && free_130>=free_137 && D1>=free_111*free_141 && free_141+free_111*free_141>=1+D1 && free_141>=free_132 && D1>=free_111*free_143 && free_111*free_143+free_143>=1+D1 && free_132>=free_143 && S>=R*free_136+free_111*free_136 && R*free_136+free_136+free_111*free_136>=1+S && free_136>=free_131 && S>=R*free_139+free_111*free_139 && R*free_139+free_139+free_111*free_139>=1+S && free_131>=free_139 && free_111+R>=free_111*free_142 && free_111*free_142+free_142>=1+free_111+R && free_142>=free_133 && free_111+R>=free_111*free_138 && free_138+free_111*free_138>=1+free_111+R && free_133>=free_138 && S>=free_111*free_140 && free_140+free_111*free_140>=1+S && free_140>=free_134 && S>=free_111*free_144 && free_111*free_144+free_144>=1+S && free_134>=free_144 && C1==Q1_1 && A>=Q && 1+C1==A ], cost: 4-Q+A 219: f148 -> [29] : D'=free_148, E'=free_111, Q'=1+A, O'=free_149, R'=free_194*free_146+free_145*free_192+free_193, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, U1'=free_112, V1'=free_111, [ R>=0 && free_111>=1 && B>=1+Q1_1 && D1>=free_111*free_150+free_150*R && free_150+free_111*free_150+free_150*R>=1+D1 && free_150>=free_145 && D1>=free_111*free_152+R*free_152 && free_111*free_152+R*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=free_111*free_156 && free_111*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=free_111*free_158 && free_111*free_158+free_158>=1+D1 && free_147>=free_158 && S>=R*free_151+free_111*free_151 && free_151+R*free_151+free_111*free_151>=1+S && free_151>=free_146 && S>=free_154*R+free_111*free_154 && free_154+free_154*R+free_111*free_154>=1+S && free_146>=free_154 && free_111+R>=free_111*free_157 && free_157+free_111*free_157>=1+free_111+R && free_157>=free_148 && free_111+R>=free_111*free_153 && free_111*free_153+free_153>=1+free_111+R && free_148>=free_153 && S>=free_111*free_155 && free_111*free_155+free_155>=1+S && free_155>=free_149 && S>=free_111*free_159 && free_111*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && A>=2+C1 && A>=Q ], cost: 4-Q+A 220: f148 -> [29] : D'=free_148, E'=free_111, Q'=1+A, O'=free_149, R'=free_145*free_195+free_197*free_146+free_196, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, U1'=free_112, V1'=free_111, [ R>=0 && free_111>=1 && B>=1+Q1_1 && D1>=free_111*free_150+free_150*R && free_150+free_111*free_150+free_150*R>=1+D1 && free_150>=free_145 && D1>=free_111*free_152+R*free_152 && free_111*free_152+R*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=free_111*free_156 && free_111*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=free_111*free_158 && free_111*free_158+free_158>=1+D1 && free_147>=free_158 && S>=R*free_151+free_111*free_151 && free_151+R*free_151+free_111*free_151>=1+S && free_151>=free_146 && S>=free_154*R+free_111*free_154 && free_154+free_154*R+free_111*free_154>=1+S && free_146>=free_154 && free_111+R>=free_111*free_157 && free_157+free_111*free_157>=1+free_111+R && free_157>=free_148 && free_111+R>=free_111*free_153 && free_111*free_153+free_153>=1+free_111+R && free_148>=free_153 && S>=free_111*free_155 && free_111*free_155+free_155>=1+S && free_155>=free_149 && S>=free_111*free_159 && free_111*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && C1>=A && A>=Q ], cost: 4-Q+A 221: f148 -> [29] : D'=free_118, E'=-free_113, Q'=1+A, O'=free_119, R'=free_191*free_116+free_190, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=-1+A, W1'=free_114, X1'=free_113, [ 0>=1+R && 0>=1-free_113 && D1>=-free_113*free_120+R*free_120 && -free_113*free_120+R*free_120+free_120>=1+D1 && free_120>=free_115 && D1>=-free_122*free_113+R*free_122 && free_122-free_122*free_113+R*free_122>=1+D1 && free_115>=free_122 && D1>=-free_113*free_126 && -free_113*free_126+free_126>=1+D1 && free_126>=free_117 && D1>=-free_128*free_113 && free_128-free_128*free_113>=1+D1 && free_117>=free_128 && S>=-free_121*free_113+free_121*R && free_121-free_121*free_113+free_121*R>=1+S && free_121>=free_116 && S>=-free_124*free_113+free_124*R && free_124-free_124*free_113+free_124*R>=1+S && free_116>=free_124 && R-free_113>=-free_127*free_113 && free_127-free_127*free_113>=1+R-free_113 && free_127>=free_118 && R-free_113>=-free_113*free_123 && -free_113*free_123+free_123>=1+R-free_113 && free_118>=free_123 && S>=-free_125*free_113 && -free_125*free_113+free_125>=1+S && free_125>=free_119 && S>=-free_113*free_129 && -free_113*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=Q && 1+B==A ], cost: 4-Q+A 222: f148 -> [29] : D'=free_118, E'=-free_113, Q'=1+A, O'=free_119, R'=free_194*free_116+free_115*free_192+free_193, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=B, W1'=free_114, X1'=free_113, [ 0>=1+R && 0>=1-free_113 && D1>=-free_113*free_120+R*free_120 && -free_113*free_120+R*free_120+free_120>=1+D1 && free_120>=free_115 && D1>=-free_122*free_113+R*free_122 && free_122-free_122*free_113+R*free_122>=1+D1 && free_115>=free_122 && D1>=-free_113*free_126 && -free_113*free_126+free_126>=1+D1 && free_126>=free_117 && D1>=-free_128*free_113 && free_128-free_128*free_113>=1+D1 && free_117>=free_128 && S>=-free_121*free_113+free_121*R && free_121-free_121*free_113+free_121*R>=1+S && free_121>=free_116 && S>=-free_124*free_113+free_124*R && free_124-free_124*free_113+free_124*R>=1+S && free_116>=free_124 && R-free_113>=-free_127*free_113 && free_127-free_127*free_113>=1+R-free_113 && free_127>=free_118 && R-free_113>=-free_113*free_123 && -free_113*free_123+free_123>=1+R-free_113 && free_118>=free_123 && S>=-free_125*free_113 && -free_125*free_113+free_125>=1+S && free_125>=free_119 && S>=-free_113*free_129 && -free_113*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=2+B && A>=Q ], cost: 4-Q+A 223: f148 -> [29] : D'=free_133, E'=-free_113, Q'=1+A, O'=free_134, R'=free_190+free_191*free_131, S'=free_131, V'=free_132, D1'=free_130, Q1_1'=-1+A, W1'=free_114, X1'=free_113, [ 0>=1+R && 0>=1-free_113 && Q1_1>=1+B && D1>=R*free_135-free_135*free_113 && R*free_135-free_135*free_113+free_135>=1+D1 && free_135>=free_130 && D1>=free_137*R-free_137*free_113 && free_137+free_137*R-free_137*free_113>=1+D1 && free_130>=free_137 && D1>=-free_141*free_113 && free_141-free_141*free_113>=1+D1 && free_141>=free_132 && D1>=-free_113*free_143 && -free_113*free_143+free_143>=1+D1 && free_132>=free_143 && S>=-free_113*free_136+R*free_136 && -free_113*free_136+R*free_136+free_136>=1+S && free_136>=free_131 && S>=-free_113*free_139+R*free_139 && -free_113*free_139+R*free_139+free_139>=1+S && free_131>=free_139 && R-free_113>=-free_142*free_113 && -free_142*free_113+free_142>=1+R-free_113 && free_142>=free_133 && R-free_113>=-free_138*free_113 && free_138-free_138*free_113>=1+R-free_113 && free_133>=free_138 && S>=-free_140*free_113 && free_140-free_140*free_113>=1+S && free_140>=free_134 && S>=-free_144*free_113 && free_144-free_144*free_113>=1+S && free_134>=free_144 && C1==Q1_1 && A>=Q && 1+C1==A ], cost: 4-Q+A 224: f148 -> [29] : D'=free_148, E'=-free_113, Q'=1+A, O'=free_149, R'=free_194*free_146+free_145*free_192+free_193, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, W1'=free_114, X1'=free_113, [ 0>=1+R && 0>=1-free_113 && B>=1+Q1_1 && D1>=-free_150*free_113+free_150*R && free_150-free_150*free_113+free_150*R>=1+D1 && free_150>=free_145 && D1>=R*free_152-free_113*free_152 && R*free_152-free_113*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=-free_113*free_156 && -free_113*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=-free_113*free_158 && -free_113*free_158+free_158>=1+D1 && free_147>=free_158 && S>=-free_151*free_113+R*free_151 && free_151-free_151*free_113+R*free_151>=1+S && free_151>=free_146 && S>=-free_154*free_113+free_154*R && -free_154*free_113+free_154+free_154*R>=1+S && free_146>=free_154 && R-free_113>=-free_157*free_113 && free_157-free_157*free_113>=1+R-free_113 && free_157>=free_148 && R-free_113>=-free_113*free_153 && -free_113*free_153+free_153>=1+R-free_113 && free_148>=free_153 && S>=-free_155*free_113 && -free_155*free_113+free_155>=1+S && free_155>=free_149 && S>=-free_113*free_159 && -free_113*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && A>=2+C1 && A>=Q ], cost: 4-Q+A 225: f148 -> [29] : D'=free_148, E'=-free_113, Q'=1+A, O'=free_149, R'=free_145*free_195+free_197*free_146+free_196, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, W1'=free_114, X1'=free_113, [ 0>=1+R && 0>=1-free_113 && B>=1+Q1_1 && D1>=-free_150*free_113+free_150*R && free_150-free_150*free_113+free_150*R>=1+D1 && free_150>=free_145 && D1>=R*free_152-free_113*free_152 && R*free_152-free_113*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=-free_113*free_156 && -free_113*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=-free_113*free_158 && -free_113*free_158+free_158>=1+D1 && free_147>=free_158 && S>=-free_151*free_113+R*free_151 && free_151-free_151*free_113+R*free_151>=1+S && free_151>=free_146 && S>=-free_154*free_113+free_154*R && -free_154*free_113+free_154+free_154*R>=1+S && free_146>=free_154 && R-free_113>=-free_157*free_113 && free_157-free_157*free_113>=1+R-free_113 && free_157>=free_148 && R-free_113>=-free_113*free_153 && -free_113*free_153+free_153>=1+R-free_113 && free_148>=free_153 && S>=-free_155*free_113 && -free_155*free_113+free_155>=1+S && free_155>=free_149 && S>=-free_113*free_159 && -free_113*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && C1>=A && A>=Q ], cost: 4-Q+A 158: f2 -> f18 : A'=G, F'=-(-1+Q-G)*free, H'=1+H, Q'=1+G, J'=free, Q_1'=0, [ G>=H && G>=Q && 1+H>=1+G ], cost: 5-Q+G 159: f2 -> f18 : A'=G, F'=0, Q_1'=0, [ H>=1+G ], cost: 2 12: f18 -> f23 : C'=0, [ A>=1 ], cost: 1 160: f23 -> f34 : B'=1, E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 && 0>=1+free_1 && 1>=1 ], cost: -1+2*B 164: f23 -> f34 : B'=1, E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 && free_1>=1 && 1>=1 ], cost: -1+2*B 168: f23 -> f34 : B'=1, E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 && 0>=1+free_4 && 1>=1 ], cost: -1+2*B 172: f23 -> f34 : B'=1, E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 && free_4>=1 && 1>=1 ], cost: -1+2*B 176: f23 -> f34 : B'=1, E'=F, K'=-free_7, L'=free_7, M'=free_8, [ B>=2 && free_8>=1 && 1>=1 ], cost: -1+2*B 161: f23 -> [34] : B'=1, E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 && 0>=1+free_1 ], cost: -2+2*B 162: f23 -> [35] : B'=1, E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 && 0>=1+free_1 ], cost: -2+2*B 163: f23 -> [36] : B'=1, E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 && 0>=1+free_1 ], cost: -2+2*B 165: f23 -> [37] : B'=1, E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 && free_1>=1 ], cost: -2+2*B 166: f23 -> [38] : B'=1, E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 && free_1>=1 ], cost: -2+2*B 167: f23 -> [39] : B'=1, E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 && free_1>=1 ], cost: -2+2*B 169: f23 -> [40] : B'=1, E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 && 0>=1+free_4 ], cost: -2+2*B 170: f23 -> [41] : B'=1, E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 && 0>=1+free_4 ], cost: -2+2*B 171: f23 -> [42] : B'=1, E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 && 0>=1+free_4 ], cost: -2+2*B 173: f23 -> [43] : B'=1, E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 && free_4>=1 ], cost: -2+2*B 174: f23 -> [44] : B'=1, E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 && free_4>=1 ], cost: -2+2*B 175: f23 -> [45] : B'=1, E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 && free_4>=1 ], cost: -2+2*B 177: f23 -> [46] : B'=1, E'=F, K'=-free_7, L'=free_7, M'=free_8, [ B>=2 && free_8>=1 ], cost: -2+2*B 178: f23 -> [47] : B'=1, E'=F, K'=-free_7, L'=free_7, M'=free_8, [ B>=2 && free_8>=1 ], cost: -2+2*B 179: f23 -> [48] : B'=1, E'=F, K'=-free_7, L'=free_7, M'=free_8, [ B>=2 && free_8>=1 ], cost: -2+2*B 180: f34 -> f77 : D'=free_12, O'=free_13, P'=free_10*free_11, [ A>=1+B && A>=2+B && 29>=C && 9>=C ], cost: 4 181: f34 -> f77 : D'=free_12, O'=free_13, P'=free_10*free_11, [ A>=1+B && A>=2+B && 29>=C && C>=11 ], cost: 4 183: f34 -> f77 : C'=30, D'=free_12, O'=free_13, P'=free_10*free_11, [ A>=1+B && A>=2+B && C==30 && 30>=11 ], cost: 4 185: f34 -> f77 : D'=free_16, O'=free_17, P'=free_14*free_15, [ B>=1+A && B>=A && 29>=C && 9>=C ], cost: 4 186: f34 -> f77 : D'=free_16, O'=free_17, P'=free_14*free_15, [ B>=1+A && B>=A && 29>=C && C>=11 ], cost: 4 80: f80 -> f93 : C'=1+C, D'=3*free_226, E'=4*free_226, H'=1+A, J'=free_226, O'=3*free_226, P'=free_225, Z1'=4*free_226-free_227, A2'=free_227, [ A>=H && 1+A>=1+A ], cost: 2-H+A 196: f93 -> f124 : E'=free_207+free_211+free_212, R'=free_210, S'=free_206, V'=free_208, C1'=B, D1'=free_209, E1'=free_211, F1'=free_212, G1'=free_207, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && 0>=1+free_55*free_62+free_65*free_62 && free_223>=free_212*free_219+free_211*free_219+free_207*free_219 && free_212*free_219+free_211*free_219+free_207*free_219+free_219>=1+free_223 && free_219>=free_209 && free_223>=free_212*free_213+free_207*free_213+free_211*free_213 && free_212*free_213+free_207*free_213+free_211*free_213+free_213>=1+free_223 && free_209>=free_213 && free_208^2+O*D>=O*free_208+free_208*D+P+free_222*free_216 && O*free_208+free_208*D+P+free_216+free_222*free_216>=1+free_208^2+O*D && free_218+free_216>=free_214*free_212+free_207*free_214+free_214*free_211 && free_214*free_212+free_214+free_207*free_214+free_214*free_211>=1+free_218+free_216 && free_214>=free_210 && free_208^2+O*D>=O*free_208+free_224*free_222+free_208*D+P && O*free_208+free_224*free_222+free_208*D+free_224+P>=1+free_208^2+O*D && free_224+free_218>=free_207*free_220+free_220*free_211+free_220*free_212 && free_220+free_207*free_220+free_220*free_211+free_220*free_212>=1+free_224+free_218 && free_210>=free_220 && free_208+free_221>=free_217*free_211+free_207*free_217+O+free_217*free_212+D && free_217*free_211+free_217+free_207*free_217+O+free_217*free_212+D>=1+free_208+free_221 && free_217>=free_206 && free_208+free_221>=free_211*free_215+free_207*free_215+free_215*free_212+O+D && free_211*free_215+free_207*free_215+free_215*free_212+O+free_215+D>=1+free_208+free_221 && free_206>=free_215 && B==-1+C1 ], cost: 3 197: f93 -> f124 : E'=free_59+free_53+free_63, R'=free_58, S'=free_52, V'=free_54, C1'=-1+C1, D1'=free_56, E1'=free_59, F1'=free_63, G1'=free_53, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && 0>=1+free_55*free_62+free_65*free_62 && free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && -1+C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 ], cost: 4 198: f93 -> f124 : E'=free_207+free_211+free_212, R'=free_210, S'=free_206, V'=free_208, C1'=B, D1'=free_209, E1'=free_211, F1'=free_212, G1'=free_207, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_55*free_62+free_65*free_62>=1 && free_223>=free_212*free_219+free_211*free_219+free_207*free_219 && free_212*free_219+free_211*free_219+free_207*free_219+free_219>=1+free_223 && free_219>=free_209 && free_223>=free_212*free_213+free_207*free_213+free_211*free_213 && free_212*free_213+free_207*free_213+free_211*free_213+free_213>=1+free_223 && free_209>=free_213 && free_208^2+O*D>=O*free_208+free_208*D+P+free_222*free_216 && O*free_208+free_208*D+P+free_216+free_222*free_216>=1+free_208^2+O*D && free_218+free_216>=free_214*free_212+free_207*free_214+free_214*free_211 && free_214*free_212+free_214+free_207*free_214+free_214*free_211>=1+free_218+free_216 && free_214>=free_210 && free_208^2+O*D>=O*free_208+free_224*free_222+free_208*D+P && O*free_208+free_224*free_222+free_208*D+free_224+P>=1+free_208^2+O*D && free_224+free_218>=free_207*free_220+free_220*free_211+free_220*free_212 && free_220+free_207*free_220+free_220*free_211+free_220*free_212>=1+free_224+free_218 && free_210>=free_220 && free_208+free_221>=free_217*free_211+free_207*free_217+O+free_217*free_212+D && free_217*free_211+free_217+free_207*free_217+O+free_217*free_212+D>=1+free_208+free_221 && free_217>=free_206 && free_208+free_221>=free_211*free_215+free_207*free_215+free_215*free_212+O+D && free_211*free_215+free_207*free_215+free_215*free_212+O+free_215+D>=1+free_208+free_221 && free_206>=free_215 && B==-1+C1 ], cost: 3 199: f93 -> f124 : E'=free_59+free_53+free_63, R'=free_58, S'=free_52, V'=free_54, C1'=-1+C1, D1'=free_56, E1'=free_59, F1'=free_63, G1'=free_53, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_55*free_62+free_65*free_62>=1 && free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && -1+C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 ], cost: 4 200: f93 -> f124 : [ B>=1+C1 ], cost: 1 117: f124 -> f132 : H'=3+C1, [ A>=2+C1 && H==2+C1 && 3+C1>=1+A ], cost: 4-H+C1 118: f124 -> f132 : H'=1+H, [ 1+C1>=H && A>=H && 1+H>=1+A ], cost: 2 119: f124 -> f132 : H'=1+A, [ H>=3+C1 && A>=H && 1+A>=1+A ], cost: 2-H+A 120: f124 -> f132 : [ H>=1+A ], cost: 1 42: f132 -> f148 : Q1_1'=C1, [ A>=1+Q1_1 && C1==Q1_1 ], cost: 1 203: f132 -> f148 : D'=0, R'=free_78, S'=free_79, D1'=0, Q1_1'=-1+A, R1'=free_83, S1'=free_84, T1'=free_82, [ C1>=1+Q1_1 && A>=1+Q1_1 && 1+Q1_1==A && free_84+free_82+free_83==0 ], cost: 3 205: f132 -> f148 : D'=free_87+free_88+free_85, R'=free_94, S'=free_95, D1'=free_93, R1'=free_87, S1'=free_88, T1'=free_85, [ C1>=1+Q1_1 && A>=1+Q1_1 && A>=2+Q1_1 && free_86>=(free_87+free_88+free_85)*free_99 && (free_87+free_88+free_85)*free_99+free_99>=1+free_86 && free_99>=free_93 && free_86>=free_96*(free_87+free_88+free_85) && free_96+free_96*(free_87+free_88+free_85)>=1+free_86 && free_93>=free_96 && free_79>=(free_87+free_88+free_85)*free_97 && free_97+(free_87+free_88+free_85)*free_97>=1+free_79 && free_97>=free_95 && free_79>=(free_87+free_88+free_85)*free_98 && (free_87+free_88+free_85)*free_98+free_98>=1+free_79 && free_95>=free_98 && 0>=1+free_87+free_88+free_85 && free_78>=(free_87+free_88+free_85)*free_100 && free_100+(free_87+free_88+free_85)*free_100>=1+free_78 && free_100>=free_94 && free_78>=(free_87+free_88+free_85)*free_101 && (free_87+free_88+free_85)*free_101+free_101>=1+free_78 && free_94>=free_101 ], cost: 3 206: f132 -> f148 : D'=free_87+free_88+free_85, R'=free_103, S'=free_104, D1'=free_102, R1'=free_87, S1'=free_88, T1'=free_85, [ C1>=1+Q1_1 && A>=1+Q1_1 && A>=2+Q1_1 && free_86>=(free_87+free_88+free_85)*free_108 && (free_87+free_88+free_85)*free_108+free_108>=1+free_86 && free_108>=free_102 && free_86>=(free_87+free_88+free_85)*free_105 && (free_87+free_88+free_85)*free_105+free_105>=1+free_86 && free_102>=free_105 && free_79>=(free_87+free_88+free_85)*free_106 && free_106+(free_87+free_88+free_85)*free_106>=1+free_79 && free_106>=free_104 && free_79>=(free_87+free_88+free_85)*free_107 && free_107+(free_87+free_88+free_85)*free_107>=1+free_79 && free_104>=free_107 && free_87+free_88+free_85>=1 && free_78>=free_109*(free_87+free_88+free_85) && free_109+free_109*(free_87+free_88+free_85)>=1+free_78 && free_109>=free_103 && free_78>=(free_87+free_88+free_85)*free_110 && (free_87+free_88+free_85)*free_110+free_110>=1+free_78 && free_103>=free_110 ], cost: 3 208: f132 -> f148 : D'=0, R'=free_80, S'=free_81, D1'=free_86, R1'=free_87, S1'=free_88, T1'=free_85, [ Q1_1>=1+C1 && A>=1+Q1_1 && A>=2+Q1_1 && free_87+free_88+free_85==0 ], cost: 3 226: [29] -> f132 : H'=1+A, R'=free_198*D+O*free_199, Q1_1'=A, Y1'=A, [ Q>=1+A && 2+Q1_1>=A && A>=H && 1+Q1_1==A && 1+A>=1+A ], cost: 3-H+A 227: [29] -> f132 : H'=1+A, R'=free_201*D+free_200*V+O*free_202, Q1_1'=1+Q1_1, Y1'=A, [ Q>=1+A && 2+Q1_1>=A && A>=2+Q1_1 && A>=H && 1+A>=1+A ], cost: 3-H+A 228: [29] -> f132 : H'=1+A, R'=V*free_203+free_204*D+O*free_205, Q1_1'=1+Q1_1, Y1'=A, [ Q>=1+A && 2+Q1_1>=A && Q1_1>=A && A>=H && 1+A>=1+A ], cost: 3-H+A 229: [29] -> f132 : H'=4+Q1_1, R'=free_201*D+free_200*V+O*free_202, Q1_1'=1+Q1_1, Y1'=3+Q1_1, [ Q>=1+A && A>=3+Q1_1 && A>=2+Q1_1 && 3+Q1_1>=H && 4+Q1_1>=4+Q1_1 ], cost: 6-H+Q1_1 Found configuration with infinitely models for cost: 5-Q+G and guard: G>=H && G>=Q && 1+H>=1+G: H: Const, Q: Neg, G: Const Found new complexity n^1, because: Found infinity configuration. Performed chaining from the start location: Start location: f2 30: f77 -> f80 : C'=20, Q_1'=Q_1+D, [ C==20 ], cost: 1 211: f148 -> [29] : D'=free_118, E'=free_111, Q'=1+A, O'=free_119, R'=free_191*free_116+free_190, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=-1+A, U1'=free_112, V1'=free_111, [ R>=0 && 0>=1+free_111 && D1>=R*free_120+free_111*free_120 && R*free_120+free_120+free_111*free_120>=1+D1 && free_120>=free_115 && D1>=free_111*free_122+R*free_122 && free_122+free_111*free_122+R*free_122>=1+D1 && free_115>=free_122 && D1>=free_111*free_126 && free_126+free_111*free_126>=1+D1 && free_126>=free_117 && D1>=free_111*free_128 && free_128+free_111*free_128>=1+D1 && free_117>=free_128 && S>=free_111*free_121+free_121*R && free_121+free_111*free_121+free_121*R>=1+S && free_121>=free_116 && S>=free_111*free_124+free_124*R && free_124+free_111*free_124+free_124*R>=1+S && free_116>=free_124 && free_111+R>=free_111*free_127 && free_127+free_111*free_127>=1+free_111+R && free_127>=free_118 && free_111+R>=free_111*free_123 && free_111*free_123+free_123>=1+free_111+R && free_118>=free_123 && S>=free_111*free_125 && free_125+free_111*free_125>=1+S && free_125>=free_119 && S>=free_111*free_129 && free_111*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=Q && 1+B==A ], cost: 4-Q+A 212: f148 -> [29] : D'=free_118, E'=free_111, Q'=1+A, O'=free_119, R'=free_194*free_116+free_115*free_192+free_193, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=B, U1'=free_112, V1'=free_111, [ R>=0 && 0>=1+free_111 && D1>=R*free_120+free_111*free_120 && R*free_120+free_120+free_111*free_120>=1+D1 && free_120>=free_115 && D1>=free_111*free_122+R*free_122 && free_122+free_111*free_122+R*free_122>=1+D1 && free_115>=free_122 && D1>=free_111*free_126 && free_126+free_111*free_126>=1+D1 && free_126>=free_117 && D1>=free_111*free_128 && free_128+free_111*free_128>=1+D1 && free_117>=free_128 && S>=free_111*free_121+free_121*R && free_121+free_111*free_121+free_121*R>=1+S && free_121>=free_116 && S>=free_111*free_124+free_124*R && free_124+free_111*free_124+free_124*R>=1+S && free_116>=free_124 && free_111+R>=free_111*free_127 && free_127+free_111*free_127>=1+free_111+R && free_127>=free_118 && free_111+R>=free_111*free_123 && free_111*free_123+free_123>=1+free_111+R && free_118>=free_123 && S>=free_111*free_125 && free_125+free_111*free_125>=1+S && free_125>=free_119 && S>=free_111*free_129 && free_111*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=2+B && A>=Q ], cost: 4-Q+A 213: f148 -> [29] : D'=free_133, E'=free_111, Q'=1+A, O'=free_134, R'=free_190+free_191*free_131, S'=free_131, V'=free_132, D1'=free_130, Q1_1'=-1+A, U1'=free_112, V1'=free_111, [ R>=0 && 0>=1+free_111 && Q1_1>=1+B && D1>=R*free_135+free_111*free_135 && R*free_135+free_111*free_135+free_135>=1+D1 && free_135>=free_130 && D1>=free_111*free_137+free_137*R && free_111*free_137+free_137+free_137*R>=1+D1 && free_130>=free_137 && D1>=free_111*free_141 && free_141+free_111*free_141>=1+D1 && free_141>=free_132 && D1>=free_111*free_143 && free_111*free_143+free_143>=1+D1 && free_132>=free_143 && S>=R*free_136+free_111*free_136 && R*free_136+free_136+free_111*free_136>=1+S && free_136>=free_131 && S>=R*free_139+free_111*free_139 && R*free_139+free_139+free_111*free_139>=1+S && free_131>=free_139 && free_111+R>=free_111*free_142 && free_111*free_142+free_142>=1+free_111+R && free_142>=free_133 && free_111+R>=free_111*free_138 && free_138+free_111*free_138>=1+free_111+R && free_133>=free_138 && S>=free_111*free_140 && free_140+free_111*free_140>=1+S && free_140>=free_134 && S>=free_111*free_144 && free_111*free_144+free_144>=1+S && free_134>=free_144 && C1==Q1_1 && A>=Q && 1+C1==A ], cost: 4-Q+A 214: f148 -> [29] : D'=free_148, E'=free_111, Q'=1+A, O'=free_149, R'=free_194*free_146+free_145*free_192+free_193, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, U1'=free_112, V1'=free_111, [ R>=0 && 0>=1+free_111 && B>=1+Q1_1 && D1>=free_111*free_150+free_150*R && free_150+free_111*free_150+free_150*R>=1+D1 && free_150>=free_145 && D1>=free_111*free_152+R*free_152 && free_111*free_152+R*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=free_111*free_156 && free_111*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=free_111*free_158 && free_111*free_158+free_158>=1+D1 && free_147>=free_158 && S>=R*free_151+free_111*free_151 && free_151+R*free_151+free_111*free_151>=1+S && free_151>=free_146 && S>=free_154*R+free_111*free_154 && free_154+free_154*R+free_111*free_154>=1+S && free_146>=free_154 && free_111+R>=free_111*free_157 && free_157+free_111*free_157>=1+free_111+R && free_157>=free_148 && free_111+R>=free_111*free_153 && free_111*free_153+free_153>=1+free_111+R && free_148>=free_153 && S>=free_111*free_155 && free_111*free_155+free_155>=1+S && free_155>=free_149 && S>=free_111*free_159 && free_111*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && A>=2+C1 && A>=Q ], cost: 4-Q+A 215: f148 -> [29] : D'=free_148, E'=free_111, Q'=1+A, O'=free_149, R'=free_145*free_195+free_197*free_146+free_196, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, U1'=free_112, V1'=free_111, [ R>=0 && 0>=1+free_111 && B>=1+Q1_1 && D1>=free_111*free_150+free_150*R && free_150+free_111*free_150+free_150*R>=1+D1 && free_150>=free_145 && D1>=free_111*free_152+R*free_152 && free_111*free_152+R*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=free_111*free_156 && free_111*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=free_111*free_158 && free_111*free_158+free_158>=1+D1 && free_147>=free_158 && S>=R*free_151+free_111*free_151 && free_151+R*free_151+free_111*free_151>=1+S && free_151>=free_146 && S>=free_154*R+free_111*free_154 && free_154+free_154*R+free_111*free_154>=1+S && free_146>=free_154 && free_111+R>=free_111*free_157 && free_157+free_111*free_157>=1+free_111+R && free_157>=free_148 && free_111+R>=free_111*free_153 && free_111*free_153+free_153>=1+free_111+R && free_148>=free_153 && S>=free_111*free_155 && free_111*free_155+free_155>=1+S && free_155>=free_149 && S>=free_111*free_159 && free_111*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && C1>=A && A>=Q ], cost: 4-Q+A 216: f148 -> [29] : D'=free_118, E'=free_111, Q'=1+A, O'=free_119, R'=free_191*free_116+free_190, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=-1+A, U1'=free_112, V1'=free_111, [ R>=0 && free_111>=1 && D1>=R*free_120+free_111*free_120 && R*free_120+free_120+free_111*free_120>=1+D1 && free_120>=free_115 && D1>=free_111*free_122+R*free_122 && free_122+free_111*free_122+R*free_122>=1+D1 && free_115>=free_122 && D1>=free_111*free_126 && free_126+free_111*free_126>=1+D1 && free_126>=free_117 && D1>=free_111*free_128 && free_128+free_111*free_128>=1+D1 && free_117>=free_128 && S>=free_111*free_121+free_121*R && free_121+free_111*free_121+free_121*R>=1+S && free_121>=free_116 && S>=free_111*free_124+free_124*R && free_124+free_111*free_124+free_124*R>=1+S && free_116>=free_124 && free_111+R>=free_111*free_127 && free_127+free_111*free_127>=1+free_111+R && free_127>=free_118 && free_111+R>=free_111*free_123 && free_111*free_123+free_123>=1+free_111+R && free_118>=free_123 && S>=free_111*free_125 && free_125+free_111*free_125>=1+S && free_125>=free_119 && S>=free_111*free_129 && free_111*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=Q && 1+B==A ], cost: 4-Q+A 217: f148 -> [29] : D'=free_118, E'=free_111, Q'=1+A, O'=free_119, R'=free_194*free_116+free_115*free_192+free_193, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=B, U1'=free_112, V1'=free_111, [ R>=0 && free_111>=1 && D1>=R*free_120+free_111*free_120 && R*free_120+free_120+free_111*free_120>=1+D1 && free_120>=free_115 && D1>=free_111*free_122+R*free_122 && free_122+free_111*free_122+R*free_122>=1+D1 && free_115>=free_122 && D1>=free_111*free_126 && free_126+free_111*free_126>=1+D1 && free_126>=free_117 && D1>=free_111*free_128 && free_128+free_111*free_128>=1+D1 && free_117>=free_128 && S>=free_111*free_121+free_121*R && free_121+free_111*free_121+free_121*R>=1+S && free_121>=free_116 && S>=free_111*free_124+free_124*R && free_124+free_111*free_124+free_124*R>=1+S && free_116>=free_124 && free_111+R>=free_111*free_127 && free_127+free_111*free_127>=1+free_111+R && free_127>=free_118 && free_111+R>=free_111*free_123 && free_111*free_123+free_123>=1+free_111+R && free_118>=free_123 && S>=free_111*free_125 && free_125+free_111*free_125>=1+S && free_125>=free_119 && S>=free_111*free_129 && free_111*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=2+B && A>=Q ], cost: 4-Q+A 218: f148 -> [29] : D'=free_133, E'=free_111, Q'=1+A, O'=free_134, R'=free_190+free_191*free_131, S'=free_131, V'=free_132, D1'=free_130, Q1_1'=-1+A, U1'=free_112, V1'=free_111, [ R>=0 && free_111>=1 && Q1_1>=1+B && D1>=R*free_135+free_111*free_135 && R*free_135+free_111*free_135+free_135>=1+D1 && free_135>=free_130 && D1>=free_111*free_137+free_137*R && free_111*free_137+free_137+free_137*R>=1+D1 && free_130>=free_137 && D1>=free_111*free_141 && free_141+free_111*free_141>=1+D1 && free_141>=free_132 && D1>=free_111*free_143 && free_111*free_143+free_143>=1+D1 && free_132>=free_143 && S>=R*free_136+free_111*free_136 && R*free_136+free_136+free_111*free_136>=1+S && free_136>=free_131 && S>=R*free_139+free_111*free_139 && R*free_139+free_139+free_111*free_139>=1+S && free_131>=free_139 && free_111+R>=free_111*free_142 && free_111*free_142+free_142>=1+free_111+R && free_142>=free_133 && free_111+R>=free_111*free_138 && free_138+free_111*free_138>=1+free_111+R && free_133>=free_138 && S>=free_111*free_140 && free_140+free_111*free_140>=1+S && free_140>=free_134 && S>=free_111*free_144 && free_111*free_144+free_144>=1+S && free_134>=free_144 && C1==Q1_1 && A>=Q && 1+C1==A ], cost: 4-Q+A 219: f148 -> [29] : D'=free_148, E'=free_111, Q'=1+A, O'=free_149, R'=free_194*free_146+free_145*free_192+free_193, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, U1'=free_112, V1'=free_111, [ R>=0 && free_111>=1 && B>=1+Q1_1 && D1>=free_111*free_150+free_150*R && free_150+free_111*free_150+free_150*R>=1+D1 && free_150>=free_145 && D1>=free_111*free_152+R*free_152 && free_111*free_152+R*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=free_111*free_156 && free_111*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=free_111*free_158 && free_111*free_158+free_158>=1+D1 && free_147>=free_158 && S>=R*free_151+free_111*free_151 && free_151+R*free_151+free_111*free_151>=1+S && free_151>=free_146 && S>=free_154*R+free_111*free_154 && free_154+free_154*R+free_111*free_154>=1+S && free_146>=free_154 && free_111+R>=free_111*free_157 && free_157+free_111*free_157>=1+free_111+R && free_157>=free_148 && free_111+R>=free_111*free_153 && free_111*free_153+free_153>=1+free_111+R && free_148>=free_153 && S>=free_111*free_155 && free_111*free_155+free_155>=1+S && free_155>=free_149 && S>=free_111*free_159 && free_111*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && A>=2+C1 && A>=Q ], cost: 4-Q+A 220: f148 -> [29] : D'=free_148, E'=free_111, Q'=1+A, O'=free_149, R'=free_145*free_195+free_197*free_146+free_196, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, U1'=free_112, V1'=free_111, [ R>=0 && free_111>=1 && B>=1+Q1_1 && D1>=free_111*free_150+free_150*R && free_150+free_111*free_150+free_150*R>=1+D1 && free_150>=free_145 && D1>=free_111*free_152+R*free_152 && free_111*free_152+R*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=free_111*free_156 && free_111*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=free_111*free_158 && free_111*free_158+free_158>=1+D1 && free_147>=free_158 && S>=R*free_151+free_111*free_151 && free_151+R*free_151+free_111*free_151>=1+S && free_151>=free_146 && S>=free_154*R+free_111*free_154 && free_154+free_154*R+free_111*free_154>=1+S && free_146>=free_154 && free_111+R>=free_111*free_157 && free_157+free_111*free_157>=1+free_111+R && free_157>=free_148 && free_111+R>=free_111*free_153 && free_111*free_153+free_153>=1+free_111+R && free_148>=free_153 && S>=free_111*free_155 && free_111*free_155+free_155>=1+S && free_155>=free_149 && S>=free_111*free_159 && free_111*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && C1>=A && A>=Q ], cost: 4-Q+A 221: f148 -> [29] : D'=free_118, E'=-free_113, Q'=1+A, O'=free_119, R'=free_191*free_116+free_190, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=-1+A, W1'=free_114, X1'=free_113, [ 0>=1+R && 0>=1-free_113 && D1>=-free_113*free_120+R*free_120 && -free_113*free_120+R*free_120+free_120>=1+D1 && free_120>=free_115 && D1>=-free_122*free_113+R*free_122 && free_122-free_122*free_113+R*free_122>=1+D1 && free_115>=free_122 && D1>=-free_113*free_126 && -free_113*free_126+free_126>=1+D1 && free_126>=free_117 && D1>=-free_128*free_113 && free_128-free_128*free_113>=1+D1 && free_117>=free_128 && S>=-free_121*free_113+free_121*R && free_121-free_121*free_113+free_121*R>=1+S && free_121>=free_116 && S>=-free_124*free_113+free_124*R && free_124-free_124*free_113+free_124*R>=1+S && free_116>=free_124 && R-free_113>=-free_127*free_113 && free_127-free_127*free_113>=1+R-free_113 && free_127>=free_118 && R-free_113>=-free_113*free_123 && -free_113*free_123+free_123>=1+R-free_113 && free_118>=free_123 && S>=-free_125*free_113 && -free_125*free_113+free_125>=1+S && free_125>=free_119 && S>=-free_113*free_129 && -free_113*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=Q && 1+B==A ], cost: 4-Q+A 222: f148 -> [29] : D'=free_118, E'=-free_113, Q'=1+A, O'=free_119, R'=free_194*free_116+free_115*free_192+free_193, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=B, W1'=free_114, X1'=free_113, [ 0>=1+R && 0>=1-free_113 && D1>=-free_113*free_120+R*free_120 && -free_113*free_120+R*free_120+free_120>=1+D1 && free_120>=free_115 && D1>=-free_122*free_113+R*free_122 && free_122-free_122*free_113+R*free_122>=1+D1 && free_115>=free_122 && D1>=-free_113*free_126 && -free_113*free_126+free_126>=1+D1 && free_126>=free_117 && D1>=-free_128*free_113 && free_128-free_128*free_113>=1+D1 && free_117>=free_128 && S>=-free_121*free_113+free_121*R && free_121-free_121*free_113+free_121*R>=1+S && free_121>=free_116 && S>=-free_124*free_113+free_124*R && free_124-free_124*free_113+free_124*R>=1+S && free_116>=free_124 && R-free_113>=-free_127*free_113 && free_127-free_127*free_113>=1+R-free_113 && free_127>=free_118 && R-free_113>=-free_113*free_123 && -free_113*free_123+free_123>=1+R-free_113 && free_118>=free_123 && S>=-free_125*free_113 && -free_125*free_113+free_125>=1+S && free_125>=free_119 && S>=-free_113*free_129 && -free_113*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=2+B && A>=Q ], cost: 4-Q+A 223: f148 -> [29] : D'=free_133, E'=-free_113, Q'=1+A, O'=free_134, R'=free_190+free_191*free_131, S'=free_131, V'=free_132, D1'=free_130, Q1_1'=-1+A, W1'=free_114, X1'=free_113, [ 0>=1+R && 0>=1-free_113 && Q1_1>=1+B && D1>=R*free_135-free_135*free_113 && R*free_135-free_135*free_113+free_135>=1+D1 && free_135>=free_130 && D1>=free_137*R-free_137*free_113 && free_137+free_137*R-free_137*free_113>=1+D1 && free_130>=free_137 && D1>=-free_141*free_113 && free_141-free_141*free_113>=1+D1 && free_141>=free_132 && D1>=-free_113*free_143 && -free_113*free_143+free_143>=1+D1 && free_132>=free_143 && S>=-free_113*free_136+R*free_136 && -free_113*free_136+R*free_136+free_136>=1+S && free_136>=free_131 && S>=-free_113*free_139+R*free_139 && -free_113*free_139+R*free_139+free_139>=1+S && free_131>=free_139 && R-free_113>=-free_142*free_113 && -free_142*free_113+free_142>=1+R-free_113 && free_142>=free_133 && R-free_113>=-free_138*free_113 && free_138-free_138*free_113>=1+R-free_113 && free_133>=free_138 && S>=-free_140*free_113 && free_140-free_140*free_113>=1+S && free_140>=free_134 && S>=-free_144*free_113 && free_144-free_144*free_113>=1+S && free_134>=free_144 && C1==Q1_1 && A>=Q && 1+C1==A ], cost: 4-Q+A 224: f148 -> [29] : D'=free_148, E'=-free_113, Q'=1+A, O'=free_149, R'=free_194*free_146+free_145*free_192+free_193, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, W1'=free_114, X1'=free_113, [ 0>=1+R && 0>=1-free_113 && B>=1+Q1_1 && D1>=-free_150*free_113+free_150*R && free_150-free_150*free_113+free_150*R>=1+D1 && free_150>=free_145 && D1>=R*free_152-free_113*free_152 && R*free_152-free_113*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=-free_113*free_156 && -free_113*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=-free_113*free_158 && -free_113*free_158+free_158>=1+D1 && free_147>=free_158 && S>=-free_151*free_113+R*free_151 && free_151-free_151*free_113+R*free_151>=1+S && free_151>=free_146 && S>=-free_154*free_113+free_154*R && -free_154*free_113+free_154+free_154*R>=1+S && free_146>=free_154 && R-free_113>=-free_157*free_113 && free_157-free_157*free_113>=1+R-free_113 && free_157>=free_148 && R-free_113>=-free_113*free_153 && -free_113*free_153+free_153>=1+R-free_113 && free_148>=free_153 && S>=-free_155*free_113 && -free_155*free_113+free_155>=1+S && free_155>=free_149 && S>=-free_113*free_159 && -free_113*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && A>=2+C1 && A>=Q ], cost: 4-Q+A 225: f148 -> [29] : D'=free_148, E'=-free_113, Q'=1+A, O'=free_149, R'=free_145*free_195+free_197*free_146+free_196, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, W1'=free_114, X1'=free_113, [ 0>=1+R && 0>=1-free_113 && B>=1+Q1_1 && D1>=-free_150*free_113+free_150*R && free_150-free_150*free_113+free_150*R>=1+D1 && free_150>=free_145 && D1>=R*free_152-free_113*free_152 && R*free_152-free_113*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=-free_113*free_156 && -free_113*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=-free_113*free_158 && -free_113*free_158+free_158>=1+D1 && free_147>=free_158 && S>=-free_151*free_113+R*free_151 && free_151-free_151*free_113+R*free_151>=1+S && free_151>=free_146 && S>=-free_154*free_113+free_154*R && -free_154*free_113+free_154+free_154*R>=1+S && free_146>=free_154 && R-free_113>=-free_157*free_113 && free_157-free_157*free_113>=1+R-free_113 && free_157>=free_148 && R-free_113>=-free_113*free_153 && -free_113*free_153+free_153>=1+R-free_113 && free_148>=free_153 && S>=-free_155*free_113 && -free_155*free_113+free_155>=1+S && free_155>=free_149 && S>=-free_113*free_159 && -free_113*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && C1>=A && A>=Q ], cost: 4-Q+A 230: f2 -> f23 : A'=G, C'=0, F'=-(-1+Q-G)*free, H'=1+H, Q'=1+G, J'=free, Q_1'=0, [ G>=H && G>=Q && 1+H>=1+G && G>=1 ], cost: 6-Q+G 160: f23 -> f34 : B'=1, E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 && 0>=1+free_1 && 1>=1 ], cost: -1+2*B 164: f23 -> f34 : B'=1, E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 && free_1>=1 && 1>=1 ], cost: -1+2*B 168: f23 -> f34 : B'=1, E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 && 0>=1+free_4 && 1>=1 ], cost: -1+2*B 172: f23 -> f34 : B'=1, E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 && free_4>=1 && 1>=1 ], cost: -1+2*B 176: f23 -> f34 : B'=1, E'=F, K'=-free_7, L'=free_7, M'=free_8, [ B>=2 && free_8>=1 && 1>=1 ], cost: -1+2*B 161: f23 -> [34] : B'=1, E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 && 0>=1+free_1 ], cost: -2+2*B 162: f23 -> [35] : B'=1, E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 && 0>=1+free_1 ], cost: -2+2*B 163: f23 -> [36] : B'=1, E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 && 0>=1+free_1 ], cost: -2+2*B 165: f23 -> [37] : B'=1, E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 && free_1>=1 ], cost: -2+2*B 166: f23 -> [38] : B'=1, E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 && free_1>=1 ], cost: -2+2*B 167: f23 -> [39] : B'=1, E'=free_2+free_3, K'=free_2, L'=free_3, M'=free_1, [ 0>=1+free_2+free_3 && B>=2 && free_1>=1 ], cost: -2+2*B 169: f23 -> [40] : B'=1, E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 && 0>=1+free_4 ], cost: -2+2*B 170: f23 -> [41] : B'=1, E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 && 0>=1+free_4 ], cost: -2+2*B 171: f23 -> [42] : B'=1, E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 && 0>=1+free_4 ], cost: -2+2*B 173: f23 -> [43] : B'=1, E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 && free_4>=1 ], cost: -2+2*B 174: f23 -> [44] : B'=1, E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 && free_4>=1 ], cost: -2+2*B 175: f23 -> [45] : B'=1, E'=free_5+free_6, K'=free_5, L'=free_6, M'=free_4, [ free_5+free_6>=1 && B>=2 && free_4>=1 ], cost: -2+2*B 177: f23 -> [46] : B'=1, E'=F, K'=-free_7, L'=free_7, M'=free_8, [ B>=2 && free_8>=1 ], cost: -2+2*B 178: f23 -> [47] : B'=1, E'=F, K'=-free_7, L'=free_7, M'=free_8, [ B>=2 && free_8>=1 ], cost: -2+2*B 179: f23 -> [48] : B'=1, E'=F, K'=-free_7, L'=free_7, M'=free_8, [ B>=2 && free_8>=1 ], cost: -2+2*B 180: f34 -> f77 : D'=free_12, O'=free_13, P'=free_10*free_11, [ A>=1+B && A>=2+B && 29>=C && 9>=C ], cost: 4 181: f34 -> f77 : D'=free_12, O'=free_13, P'=free_10*free_11, [ A>=1+B && A>=2+B && 29>=C && C>=11 ], cost: 4 183: f34 -> f77 : C'=30, D'=free_12, O'=free_13, P'=free_10*free_11, [ A>=1+B && A>=2+B && C==30 && 30>=11 ], cost: 4 185: f34 -> f77 : D'=free_16, O'=free_17, P'=free_14*free_15, [ B>=1+A && B>=A && 29>=C && 9>=C ], cost: 4 186: f34 -> f77 : D'=free_16, O'=free_17, P'=free_14*free_15, [ B>=1+A && B>=A && 29>=C && C>=11 ], cost: 4 80: f80 -> f93 : C'=1+C, D'=3*free_226, E'=4*free_226, H'=1+A, J'=free_226, O'=3*free_226, P'=free_225, Z1'=4*free_226-free_227, A2'=free_227, [ A>=H && 1+A>=1+A ], cost: 2-H+A 196: f93 -> f124 : E'=free_207+free_211+free_212, R'=free_210, S'=free_206, V'=free_208, C1'=B, D1'=free_209, E1'=free_211, F1'=free_212, G1'=free_207, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && 0>=1+free_55*free_62+free_65*free_62 && free_223>=free_212*free_219+free_211*free_219+free_207*free_219 && free_212*free_219+free_211*free_219+free_207*free_219+free_219>=1+free_223 && free_219>=free_209 && free_223>=free_212*free_213+free_207*free_213+free_211*free_213 && free_212*free_213+free_207*free_213+free_211*free_213+free_213>=1+free_223 && free_209>=free_213 && free_208^2+O*D>=O*free_208+free_208*D+P+free_222*free_216 && O*free_208+free_208*D+P+free_216+free_222*free_216>=1+free_208^2+O*D && free_218+free_216>=free_214*free_212+free_207*free_214+free_214*free_211 && free_214*free_212+free_214+free_207*free_214+free_214*free_211>=1+free_218+free_216 && free_214>=free_210 && free_208^2+O*D>=O*free_208+free_224*free_222+free_208*D+P && O*free_208+free_224*free_222+free_208*D+free_224+P>=1+free_208^2+O*D && free_224+free_218>=free_207*free_220+free_220*free_211+free_220*free_212 && free_220+free_207*free_220+free_220*free_211+free_220*free_212>=1+free_224+free_218 && free_210>=free_220 && free_208+free_221>=free_217*free_211+free_207*free_217+O+free_217*free_212+D && free_217*free_211+free_217+free_207*free_217+O+free_217*free_212+D>=1+free_208+free_221 && free_217>=free_206 && free_208+free_221>=free_211*free_215+free_207*free_215+free_215*free_212+O+D && free_211*free_215+free_207*free_215+free_215*free_212+O+free_215+D>=1+free_208+free_221 && free_206>=free_215 && B==-1+C1 ], cost: 3 197: f93 -> f124 : E'=free_59+free_53+free_63, R'=free_58, S'=free_52, V'=free_54, C1'=-1+C1, D1'=free_56, E1'=free_59, F1'=free_63, G1'=free_53, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && 0>=1+free_55*free_62+free_65*free_62 && free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && -1+C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 ], cost: 4 198: f93 -> f124 : E'=free_207+free_211+free_212, R'=free_210, S'=free_206, V'=free_208, C1'=B, D1'=free_209, E1'=free_211, F1'=free_212, G1'=free_207, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_55*free_62+free_65*free_62>=1 && free_223>=free_212*free_219+free_211*free_219+free_207*free_219 && free_212*free_219+free_211*free_219+free_207*free_219+free_219>=1+free_223 && free_219>=free_209 && free_223>=free_212*free_213+free_207*free_213+free_211*free_213 && free_212*free_213+free_207*free_213+free_211*free_213+free_213>=1+free_223 && free_209>=free_213 && free_208^2+O*D>=O*free_208+free_208*D+P+free_222*free_216 && O*free_208+free_208*D+P+free_216+free_222*free_216>=1+free_208^2+O*D && free_218+free_216>=free_214*free_212+free_207*free_214+free_214*free_211 && free_214*free_212+free_214+free_207*free_214+free_214*free_211>=1+free_218+free_216 && free_214>=free_210 && free_208^2+O*D>=O*free_208+free_224*free_222+free_208*D+P && O*free_208+free_224*free_222+free_208*D+free_224+P>=1+free_208^2+O*D && free_224+free_218>=free_207*free_220+free_220*free_211+free_220*free_212 && free_220+free_207*free_220+free_220*free_211+free_220*free_212>=1+free_224+free_218 && free_210>=free_220 && free_208+free_221>=free_217*free_211+free_207*free_217+O+free_217*free_212+D && free_217*free_211+free_217+free_207*free_217+O+free_217*free_212+D>=1+free_208+free_221 && free_217>=free_206 && free_208+free_221>=free_211*free_215+free_207*free_215+free_215*free_212+O+D && free_211*free_215+free_207*free_215+free_215*free_212+O+free_215+D>=1+free_208+free_221 && free_206>=free_215 && B==-1+C1 ], cost: 3 199: f93 -> f124 : E'=free_59+free_53+free_63, R'=free_58, S'=free_52, V'=free_54, C1'=-1+C1, D1'=free_56, E1'=free_59, F1'=free_63, G1'=free_53, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_55*free_62+free_65*free_62>=1 && free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && -1+C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 ], cost: 4 200: f93 -> f124 : [ B>=1+C1 ], cost: 1 117: f124 -> f132 : H'=3+C1, [ A>=2+C1 && H==2+C1 && 3+C1>=1+A ], cost: 4-H+C1 118: f124 -> f132 : H'=1+H, [ 1+C1>=H && A>=H && 1+H>=1+A ], cost: 2 119: f124 -> f132 : H'=1+A, [ H>=3+C1 && A>=H && 1+A>=1+A ], cost: 2-H+A 120: f124 -> f132 : [ H>=1+A ], cost: 1 42: f132 -> f148 : Q1_1'=C1, [ A>=1+Q1_1 && C1==Q1_1 ], cost: 1 203: f132 -> f148 : D'=0, R'=free_78, S'=free_79, D1'=0, Q1_1'=-1+A, R1'=free_83, S1'=free_84, T1'=free_82, [ C1>=1+Q1_1 && A>=1+Q1_1 && 1+Q1_1==A && free_84+free_82+free_83==0 ], cost: 3 205: f132 -> f148 : D'=free_87+free_88+free_85, R'=free_94, S'=free_95, D1'=free_93, R1'=free_87, S1'=free_88, T1'=free_85, [ C1>=1+Q1_1 && A>=1+Q1_1 && A>=2+Q1_1 && free_86>=(free_87+free_88+free_85)*free_99 && (free_87+free_88+free_85)*free_99+free_99>=1+free_86 && free_99>=free_93 && free_86>=free_96*(free_87+free_88+free_85) && free_96+free_96*(free_87+free_88+free_85)>=1+free_86 && free_93>=free_96 && free_79>=(free_87+free_88+free_85)*free_97 && free_97+(free_87+free_88+free_85)*free_97>=1+free_79 && free_97>=free_95 && free_79>=(free_87+free_88+free_85)*free_98 && (free_87+free_88+free_85)*free_98+free_98>=1+free_79 && free_95>=free_98 && 0>=1+free_87+free_88+free_85 && free_78>=(free_87+free_88+free_85)*free_100 && free_100+(free_87+free_88+free_85)*free_100>=1+free_78 && free_100>=free_94 && free_78>=(free_87+free_88+free_85)*free_101 && (free_87+free_88+free_85)*free_101+free_101>=1+free_78 && free_94>=free_101 ], cost: 3 206: f132 -> f148 : D'=free_87+free_88+free_85, R'=free_103, S'=free_104, D1'=free_102, R1'=free_87, S1'=free_88, T1'=free_85, [ C1>=1+Q1_1 && A>=1+Q1_1 && A>=2+Q1_1 && free_86>=(free_87+free_88+free_85)*free_108 && (free_87+free_88+free_85)*free_108+free_108>=1+free_86 && free_108>=free_102 && free_86>=(free_87+free_88+free_85)*free_105 && (free_87+free_88+free_85)*free_105+free_105>=1+free_86 && free_102>=free_105 && free_79>=(free_87+free_88+free_85)*free_106 && free_106+(free_87+free_88+free_85)*free_106>=1+free_79 && free_106>=free_104 && free_79>=(free_87+free_88+free_85)*free_107 && free_107+(free_87+free_88+free_85)*free_107>=1+free_79 && free_104>=free_107 && free_87+free_88+free_85>=1 && free_78>=free_109*(free_87+free_88+free_85) && free_109+free_109*(free_87+free_88+free_85)>=1+free_78 && free_109>=free_103 && free_78>=(free_87+free_88+free_85)*free_110 && (free_87+free_88+free_85)*free_110+free_110>=1+free_78 && free_103>=free_110 ], cost: 3 208: f132 -> f148 : D'=0, R'=free_80, S'=free_81, D1'=free_86, R1'=free_87, S1'=free_88, T1'=free_85, [ Q1_1>=1+C1 && A>=1+Q1_1 && A>=2+Q1_1 && free_87+free_88+free_85==0 ], cost: 3 226: [29] -> f132 : H'=1+A, R'=free_198*D+O*free_199, Q1_1'=A, Y1'=A, [ Q>=1+A && 2+Q1_1>=A && A>=H && 1+Q1_1==A && 1+A>=1+A ], cost: 3-H+A 227: [29] -> f132 : H'=1+A, R'=free_201*D+free_200*V+O*free_202, Q1_1'=1+Q1_1, Y1'=A, [ Q>=1+A && 2+Q1_1>=A && A>=2+Q1_1 && A>=H && 1+A>=1+A ], cost: 3-H+A 228: [29] -> f132 : H'=1+A, R'=V*free_203+free_204*D+O*free_205, Q1_1'=1+Q1_1, Y1'=A, [ Q>=1+A && 2+Q1_1>=A && Q1_1>=A && A>=H && 1+A>=1+A ], cost: 3-H+A 229: [29] -> f132 : H'=4+Q1_1, R'=free_201*D+free_200*V+O*free_202, Q1_1'=1+Q1_1, Y1'=3+Q1_1, [ Q>=1+A && A>=3+Q1_1 && A>=2+Q1_1 && 3+Q1_1>=H && 4+Q1_1>=4+Q1_1 ], cost: 6-H+Q1_1 Performed chaining from the start location: Start location: f2 30: f77 -> f80 : C'=20, Q_1'=Q_1+D, [ C==20 ], cost: 1 211: f148 -> [29] : D'=free_118, E'=free_111, Q'=1+A, O'=free_119, R'=free_191*free_116+free_190, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=-1+A, U1'=free_112, V1'=free_111, [ R>=0 && 0>=1+free_111 && D1>=R*free_120+free_111*free_120 && R*free_120+free_120+free_111*free_120>=1+D1 && free_120>=free_115 && D1>=free_111*free_122+R*free_122 && free_122+free_111*free_122+R*free_122>=1+D1 && free_115>=free_122 && D1>=free_111*free_126 && free_126+free_111*free_126>=1+D1 && free_126>=free_117 && D1>=free_111*free_128 && free_128+free_111*free_128>=1+D1 && free_117>=free_128 && S>=free_111*free_121+free_121*R && free_121+free_111*free_121+free_121*R>=1+S && free_121>=free_116 && S>=free_111*free_124+free_124*R && free_124+free_111*free_124+free_124*R>=1+S && free_116>=free_124 && free_111+R>=free_111*free_127 && free_127+free_111*free_127>=1+free_111+R && free_127>=free_118 && free_111+R>=free_111*free_123 && free_111*free_123+free_123>=1+free_111+R && free_118>=free_123 && S>=free_111*free_125 && free_125+free_111*free_125>=1+S && free_125>=free_119 && S>=free_111*free_129 && free_111*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=Q && 1+B==A ], cost: 4-Q+A 212: f148 -> [29] : D'=free_118, E'=free_111, Q'=1+A, O'=free_119, R'=free_194*free_116+free_115*free_192+free_193, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=B, U1'=free_112, V1'=free_111, [ R>=0 && 0>=1+free_111 && D1>=R*free_120+free_111*free_120 && R*free_120+free_120+free_111*free_120>=1+D1 && free_120>=free_115 && D1>=free_111*free_122+R*free_122 && free_122+free_111*free_122+R*free_122>=1+D1 && free_115>=free_122 && D1>=free_111*free_126 && free_126+free_111*free_126>=1+D1 && free_126>=free_117 && D1>=free_111*free_128 && free_128+free_111*free_128>=1+D1 && free_117>=free_128 && S>=free_111*free_121+free_121*R && free_121+free_111*free_121+free_121*R>=1+S && free_121>=free_116 && S>=free_111*free_124+free_124*R && free_124+free_111*free_124+free_124*R>=1+S && free_116>=free_124 && free_111+R>=free_111*free_127 && free_127+free_111*free_127>=1+free_111+R && free_127>=free_118 && free_111+R>=free_111*free_123 && free_111*free_123+free_123>=1+free_111+R && free_118>=free_123 && S>=free_111*free_125 && free_125+free_111*free_125>=1+S && free_125>=free_119 && S>=free_111*free_129 && free_111*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=2+B && A>=Q ], cost: 4-Q+A 213: f148 -> [29] : D'=free_133, E'=free_111, Q'=1+A, O'=free_134, R'=free_190+free_191*free_131, S'=free_131, V'=free_132, D1'=free_130, Q1_1'=-1+A, U1'=free_112, V1'=free_111, [ R>=0 && 0>=1+free_111 && Q1_1>=1+B && D1>=R*free_135+free_111*free_135 && R*free_135+free_111*free_135+free_135>=1+D1 && free_135>=free_130 && D1>=free_111*free_137+free_137*R && free_111*free_137+free_137+free_137*R>=1+D1 && free_130>=free_137 && D1>=free_111*free_141 && free_141+free_111*free_141>=1+D1 && free_141>=free_132 && D1>=free_111*free_143 && free_111*free_143+free_143>=1+D1 && free_132>=free_143 && S>=R*free_136+free_111*free_136 && R*free_136+free_136+free_111*free_136>=1+S && free_136>=free_131 && S>=R*free_139+free_111*free_139 && R*free_139+free_139+free_111*free_139>=1+S && free_131>=free_139 && free_111+R>=free_111*free_142 && free_111*free_142+free_142>=1+free_111+R && free_142>=free_133 && free_111+R>=free_111*free_138 && free_138+free_111*free_138>=1+free_111+R && free_133>=free_138 && S>=free_111*free_140 && free_140+free_111*free_140>=1+S && free_140>=free_134 && S>=free_111*free_144 && free_111*free_144+free_144>=1+S && free_134>=free_144 && C1==Q1_1 && A>=Q && 1+C1==A ], cost: 4-Q+A 214: f148 -> [29] : D'=free_148, E'=free_111, Q'=1+A, O'=free_149, R'=free_194*free_146+free_145*free_192+free_193, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, U1'=free_112, V1'=free_111, [ R>=0 && 0>=1+free_111 && B>=1+Q1_1 && D1>=free_111*free_150+free_150*R && free_150+free_111*free_150+free_150*R>=1+D1 && free_150>=free_145 && D1>=free_111*free_152+R*free_152 && free_111*free_152+R*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=free_111*free_156 && free_111*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=free_111*free_158 && free_111*free_158+free_158>=1+D1 && free_147>=free_158 && S>=R*free_151+free_111*free_151 && free_151+R*free_151+free_111*free_151>=1+S && free_151>=free_146 && S>=free_154*R+free_111*free_154 && free_154+free_154*R+free_111*free_154>=1+S && free_146>=free_154 && free_111+R>=free_111*free_157 && free_157+free_111*free_157>=1+free_111+R && free_157>=free_148 && free_111+R>=free_111*free_153 && free_111*free_153+free_153>=1+free_111+R && free_148>=free_153 && S>=free_111*free_155 && free_111*free_155+free_155>=1+S && free_155>=free_149 && S>=free_111*free_159 && free_111*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && A>=2+C1 && A>=Q ], cost: 4-Q+A 215: f148 -> [29] : D'=free_148, E'=free_111, Q'=1+A, O'=free_149, R'=free_145*free_195+free_197*free_146+free_196, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, U1'=free_112, V1'=free_111, [ R>=0 && 0>=1+free_111 && B>=1+Q1_1 && D1>=free_111*free_150+free_150*R && free_150+free_111*free_150+free_150*R>=1+D1 && free_150>=free_145 && D1>=free_111*free_152+R*free_152 && free_111*free_152+R*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=free_111*free_156 && free_111*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=free_111*free_158 && free_111*free_158+free_158>=1+D1 && free_147>=free_158 && S>=R*free_151+free_111*free_151 && free_151+R*free_151+free_111*free_151>=1+S && free_151>=free_146 && S>=free_154*R+free_111*free_154 && free_154+free_154*R+free_111*free_154>=1+S && free_146>=free_154 && free_111+R>=free_111*free_157 && free_157+free_111*free_157>=1+free_111+R && free_157>=free_148 && free_111+R>=free_111*free_153 && free_111*free_153+free_153>=1+free_111+R && free_148>=free_153 && S>=free_111*free_155 && free_111*free_155+free_155>=1+S && free_155>=free_149 && S>=free_111*free_159 && free_111*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && C1>=A && A>=Q ], cost: 4-Q+A 216: f148 -> [29] : D'=free_118, E'=free_111, Q'=1+A, O'=free_119, R'=free_191*free_116+free_190, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=-1+A, U1'=free_112, V1'=free_111, [ R>=0 && free_111>=1 && D1>=R*free_120+free_111*free_120 && R*free_120+free_120+free_111*free_120>=1+D1 && free_120>=free_115 && D1>=free_111*free_122+R*free_122 && free_122+free_111*free_122+R*free_122>=1+D1 && free_115>=free_122 && D1>=free_111*free_126 && free_126+free_111*free_126>=1+D1 && free_126>=free_117 && D1>=free_111*free_128 && free_128+free_111*free_128>=1+D1 && free_117>=free_128 && S>=free_111*free_121+free_121*R && free_121+free_111*free_121+free_121*R>=1+S && free_121>=free_116 && S>=free_111*free_124+free_124*R && free_124+free_111*free_124+free_124*R>=1+S && free_116>=free_124 && free_111+R>=free_111*free_127 && free_127+free_111*free_127>=1+free_111+R && free_127>=free_118 && free_111+R>=free_111*free_123 && free_111*free_123+free_123>=1+free_111+R && free_118>=free_123 && S>=free_111*free_125 && free_125+free_111*free_125>=1+S && free_125>=free_119 && S>=free_111*free_129 && free_111*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=Q && 1+B==A ], cost: 4-Q+A 217: f148 -> [29] : D'=free_118, E'=free_111, Q'=1+A, O'=free_119, R'=free_194*free_116+free_115*free_192+free_193, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=B, U1'=free_112, V1'=free_111, [ R>=0 && free_111>=1 && D1>=R*free_120+free_111*free_120 && R*free_120+free_120+free_111*free_120>=1+D1 && free_120>=free_115 && D1>=free_111*free_122+R*free_122 && free_122+free_111*free_122+R*free_122>=1+D1 && free_115>=free_122 && D1>=free_111*free_126 && free_126+free_111*free_126>=1+D1 && free_126>=free_117 && D1>=free_111*free_128 && free_128+free_111*free_128>=1+D1 && free_117>=free_128 && S>=free_111*free_121+free_121*R && free_121+free_111*free_121+free_121*R>=1+S && free_121>=free_116 && S>=free_111*free_124+free_124*R && free_124+free_111*free_124+free_124*R>=1+S && free_116>=free_124 && free_111+R>=free_111*free_127 && free_127+free_111*free_127>=1+free_111+R && free_127>=free_118 && free_111+R>=free_111*free_123 && free_111*free_123+free_123>=1+free_111+R && free_118>=free_123 && S>=free_111*free_125 && free_125+free_111*free_125>=1+S && free_125>=free_119 && S>=free_111*free_129 && free_111*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=2+B && A>=Q ], cost: 4-Q+A 218: f148 -> [29] : D'=free_133, E'=free_111, Q'=1+A, O'=free_134, R'=free_190+free_191*free_131, S'=free_131, V'=free_132, D1'=free_130, Q1_1'=-1+A, U1'=free_112, V1'=free_111, [ R>=0 && free_111>=1 && Q1_1>=1+B && D1>=R*free_135+free_111*free_135 && R*free_135+free_111*free_135+free_135>=1+D1 && free_135>=free_130 && D1>=free_111*free_137+free_137*R && free_111*free_137+free_137+free_137*R>=1+D1 && free_130>=free_137 && D1>=free_111*free_141 && free_141+free_111*free_141>=1+D1 && free_141>=free_132 && D1>=free_111*free_143 && free_111*free_143+free_143>=1+D1 && free_132>=free_143 && S>=R*free_136+free_111*free_136 && R*free_136+free_136+free_111*free_136>=1+S && free_136>=free_131 && S>=R*free_139+free_111*free_139 && R*free_139+free_139+free_111*free_139>=1+S && free_131>=free_139 && free_111+R>=free_111*free_142 && free_111*free_142+free_142>=1+free_111+R && free_142>=free_133 && free_111+R>=free_111*free_138 && free_138+free_111*free_138>=1+free_111+R && free_133>=free_138 && S>=free_111*free_140 && free_140+free_111*free_140>=1+S && free_140>=free_134 && S>=free_111*free_144 && free_111*free_144+free_144>=1+S && free_134>=free_144 && C1==Q1_1 && A>=Q && 1+C1==A ], cost: 4-Q+A 219: f148 -> [29] : D'=free_148, E'=free_111, Q'=1+A, O'=free_149, R'=free_194*free_146+free_145*free_192+free_193, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, U1'=free_112, V1'=free_111, [ R>=0 && free_111>=1 && B>=1+Q1_1 && D1>=free_111*free_150+free_150*R && free_150+free_111*free_150+free_150*R>=1+D1 && free_150>=free_145 && D1>=free_111*free_152+R*free_152 && free_111*free_152+R*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=free_111*free_156 && free_111*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=free_111*free_158 && free_111*free_158+free_158>=1+D1 && free_147>=free_158 && S>=R*free_151+free_111*free_151 && free_151+R*free_151+free_111*free_151>=1+S && free_151>=free_146 && S>=free_154*R+free_111*free_154 && free_154+free_154*R+free_111*free_154>=1+S && free_146>=free_154 && free_111+R>=free_111*free_157 && free_157+free_111*free_157>=1+free_111+R && free_157>=free_148 && free_111+R>=free_111*free_153 && free_111*free_153+free_153>=1+free_111+R && free_148>=free_153 && S>=free_111*free_155 && free_111*free_155+free_155>=1+S && free_155>=free_149 && S>=free_111*free_159 && free_111*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && A>=2+C1 && A>=Q ], cost: 4-Q+A 220: f148 -> [29] : D'=free_148, E'=free_111, Q'=1+A, O'=free_149, R'=free_145*free_195+free_197*free_146+free_196, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, U1'=free_112, V1'=free_111, [ R>=0 && free_111>=1 && B>=1+Q1_1 && D1>=free_111*free_150+free_150*R && free_150+free_111*free_150+free_150*R>=1+D1 && free_150>=free_145 && D1>=free_111*free_152+R*free_152 && free_111*free_152+R*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=free_111*free_156 && free_111*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=free_111*free_158 && free_111*free_158+free_158>=1+D1 && free_147>=free_158 && S>=R*free_151+free_111*free_151 && free_151+R*free_151+free_111*free_151>=1+S && free_151>=free_146 && S>=free_154*R+free_111*free_154 && free_154+free_154*R+free_111*free_154>=1+S && free_146>=free_154 && free_111+R>=free_111*free_157 && free_157+free_111*free_157>=1+free_111+R && free_157>=free_148 && free_111+R>=free_111*free_153 && free_111*free_153+free_153>=1+free_111+R && free_148>=free_153 && S>=free_111*free_155 && free_111*free_155+free_155>=1+S && free_155>=free_149 && S>=free_111*free_159 && free_111*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && C1>=A && A>=Q ], cost: 4-Q+A 221: f148 -> [29] : D'=free_118, E'=-free_113, Q'=1+A, O'=free_119, R'=free_191*free_116+free_190, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=-1+A, W1'=free_114, X1'=free_113, [ 0>=1+R && 0>=1-free_113 && D1>=-free_113*free_120+R*free_120 && -free_113*free_120+R*free_120+free_120>=1+D1 && free_120>=free_115 && D1>=-free_122*free_113+R*free_122 && free_122-free_122*free_113+R*free_122>=1+D1 && free_115>=free_122 && D1>=-free_113*free_126 && -free_113*free_126+free_126>=1+D1 && free_126>=free_117 && D1>=-free_128*free_113 && free_128-free_128*free_113>=1+D1 && free_117>=free_128 && S>=-free_121*free_113+free_121*R && free_121-free_121*free_113+free_121*R>=1+S && free_121>=free_116 && S>=-free_124*free_113+free_124*R && free_124-free_124*free_113+free_124*R>=1+S && free_116>=free_124 && R-free_113>=-free_127*free_113 && free_127-free_127*free_113>=1+R-free_113 && free_127>=free_118 && R-free_113>=-free_113*free_123 && -free_113*free_123+free_123>=1+R-free_113 && free_118>=free_123 && S>=-free_125*free_113 && -free_125*free_113+free_125>=1+S && free_125>=free_119 && S>=-free_113*free_129 && -free_113*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=Q && 1+B==A ], cost: 4-Q+A 222: f148 -> [29] : D'=free_118, E'=-free_113, Q'=1+A, O'=free_119, R'=free_194*free_116+free_115*free_192+free_193, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=B, W1'=free_114, X1'=free_113, [ 0>=1+R && 0>=1-free_113 && D1>=-free_113*free_120+R*free_120 && -free_113*free_120+R*free_120+free_120>=1+D1 && free_120>=free_115 && D1>=-free_122*free_113+R*free_122 && free_122-free_122*free_113+R*free_122>=1+D1 && free_115>=free_122 && D1>=-free_113*free_126 && -free_113*free_126+free_126>=1+D1 && free_126>=free_117 && D1>=-free_128*free_113 && free_128-free_128*free_113>=1+D1 && free_117>=free_128 && S>=-free_121*free_113+free_121*R && free_121-free_121*free_113+free_121*R>=1+S && free_121>=free_116 && S>=-free_124*free_113+free_124*R && free_124-free_124*free_113+free_124*R>=1+S && free_116>=free_124 && R-free_113>=-free_127*free_113 && free_127-free_127*free_113>=1+R-free_113 && free_127>=free_118 && R-free_113>=-free_113*free_123 && -free_113*free_123+free_123>=1+R-free_113 && free_118>=free_123 && S>=-free_125*free_113 && -free_125*free_113+free_125>=1+S && free_125>=free_119 && S>=-free_113*free_129 && -free_113*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=2+B && A>=Q ], cost: 4-Q+A 223: f148 -> [29] : D'=free_133, E'=-free_113, Q'=1+A, O'=free_134, R'=free_190+free_191*free_131, S'=free_131, V'=free_132, D1'=free_130, Q1_1'=-1+A, W1'=free_114, X1'=free_113, [ 0>=1+R && 0>=1-free_113 && Q1_1>=1+B && D1>=R*free_135-free_135*free_113 && R*free_135-free_135*free_113+free_135>=1+D1 && free_135>=free_130 && D1>=free_137*R-free_137*free_113 && free_137+free_137*R-free_137*free_113>=1+D1 && free_130>=free_137 && D1>=-free_141*free_113 && free_141-free_141*free_113>=1+D1 && free_141>=free_132 && D1>=-free_113*free_143 && -free_113*free_143+free_143>=1+D1 && free_132>=free_143 && S>=-free_113*free_136+R*free_136 && -free_113*free_136+R*free_136+free_136>=1+S && free_136>=free_131 && S>=-free_113*free_139+R*free_139 && -free_113*free_139+R*free_139+free_139>=1+S && free_131>=free_139 && R-free_113>=-free_142*free_113 && -free_142*free_113+free_142>=1+R-free_113 && free_142>=free_133 && R-free_113>=-free_138*free_113 && free_138-free_138*free_113>=1+R-free_113 && free_133>=free_138 && S>=-free_140*free_113 && free_140-free_140*free_113>=1+S && free_140>=free_134 && S>=-free_144*free_113 && free_144-free_144*free_113>=1+S && free_134>=free_144 && C1==Q1_1 && A>=Q && 1+C1==A ], cost: 4-Q+A 224: f148 -> [29] : D'=free_148, E'=-free_113, Q'=1+A, O'=free_149, R'=free_194*free_146+free_145*free_192+free_193, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, W1'=free_114, X1'=free_113, [ 0>=1+R && 0>=1-free_113 && B>=1+Q1_1 && D1>=-free_150*free_113+free_150*R && free_150-free_150*free_113+free_150*R>=1+D1 && free_150>=free_145 && D1>=R*free_152-free_113*free_152 && R*free_152-free_113*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=-free_113*free_156 && -free_113*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=-free_113*free_158 && -free_113*free_158+free_158>=1+D1 && free_147>=free_158 && S>=-free_151*free_113+R*free_151 && free_151-free_151*free_113+R*free_151>=1+S && free_151>=free_146 && S>=-free_154*free_113+free_154*R && -free_154*free_113+free_154+free_154*R>=1+S && free_146>=free_154 && R-free_113>=-free_157*free_113 && free_157-free_157*free_113>=1+R-free_113 && free_157>=free_148 && R-free_113>=-free_113*free_153 && -free_113*free_153+free_153>=1+R-free_113 && free_148>=free_153 && S>=-free_155*free_113 && -free_155*free_113+free_155>=1+S && free_155>=free_149 && S>=-free_113*free_159 && -free_113*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && A>=2+C1 && A>=Q ], cost: 4-Q+A 225: f148 -> [29] : D'=free_148, E'=-free_113, Q'=1+A, O'=free_149, R'=free_145*free_195+free_197*free_146+free_196, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, W1'=free_114, X1'=free_113, [ 0>=1+R && 0>=1-free_113 && B>=1+Q1_1 && D1>=-free_150*free_113+free_150*R && free_150-free_150*free_113+free_150*R>=1+D1 && free_150>=free_145 && D1>=R*free_152-free_113*free_152 && R*free_152-free_113*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=-free_113*free_156 && -free_113*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=-free_113*free_158 && -free_113*free_158+free_158>=1+D1 && free_147>=free_158 && S>=-free_151*free_113+R*free_151 && free_151-free_151*free_113+R*free_151>=1+S && free_151>=free_146 && S>=-free_154*free_113+free_154*R && -free_154*free_113+free_154+free_154*R>=1+S && free_146>=free_154 && R-free_113>=-free_157*free_113 && free_157-free_157*free_113>=1+R-free_113 && free_157>=free_148 && R-free_113>=-free_113*free_153 && -free_113*free_153+free_153>=1+R-free_113 && free_148>=free_153 && S>=-free_155*free_113 && -free_155*free_113+free_155>=1+S && free_155>=free_149 && S>=-free_113*free_159 && -free_113*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && C1>=A && A>=Q ], cost: 4-Q+A 231: f2 -> f34 : A'=G, B'=1, C'=0, E'=free_2+free_3, F'=-(-1+Q-G)*free, H'=1+H, Q'=1+G, J'=free, K'=free_2, L'=free_3, M'=free_1, Q_1'=0, [ G>=H && G>=Q && 1+H>=1+G && G>=1 && 0>=1+free_2+free_3 && B>=2 && 0>=1+free_1 && 1>=1 ], cost: 5+2*B-Q+G 232: f2 -> f34 : A'=G, B'=1, C'=0, E'=free_2+free_3, F'=-(-1+Q-G)*free, H'=1+H, Q'=1+G, J'=free, K'=free_2, L'=free_3, M'=free_1, Q_1'=0, [ G>=H && G>=Q && 1+H>=1+G && G>=1 && 0>=1+free_2+free_3 && B>=2 && free_1>=1 && 1>=1 ], cost: 5+2*B-Q+G 233: f2 -> f34 : A'=G, B'=1, C'=0, E'=free_5+free_6, F'=-(-1+Q-G)*free, H'=1+H, Q'=1+G, J'=free, K'=free_5, L'=free_6, M'=free_4, Q_1'=0, [ G>=H && G>=Q && 1+H>=1+G && G>=1 && free_5+free_6>=1 && B>=2 && 0>=1+free_4 && 1>=1 ], cost: 5+2*B-Q+G 234: f2 -> f34 : A'=G, B'=1, C'=0, E'=free_5+free_6, F'=-(-1+Q-G)*free, H'=1+H, Q'=1+G, J'=free, K'=free_5, L'=free_6, M'=free_4, Q_1'=0, [ G>=H && G>=Q && 1+H>=1+G && G>=1 && free_5+free_6>=1 && B>=2 && free_4>=1 && 1>=1 ], cost: 5+2*B-Q+G 235: f2 -> f34 : A'=G, B'=1, C'=0, E'=-(-1+Q-G)*free, F'=-(-1+Q-G)*free, H'=1+H, Q'=1+G, J'=free, K'=-free_7, L'=free_7, M'=free_8, Q_1'=0, [ G>=H && G>=Q && 1+H>=1+G && G>=1 && B>=2 && free_8>=1 && 1>=1 ], cost: 5+2*B-Q+G 236: f2 -> [34] : A'=G, B'=1, C'=0, E'=free_2+free_3, F'=-(-1+Q-G)*free, H'=1+H, Q'=1+G, J'=free, K'=free_2, L'=free_3, M'=free_1, Q_1'=0, [ G>=H && G>=Q && 1+H>=1+G && G>=1 && 0>=1+free_2+free_3 && B>=2 && 0>=1+free_1 ], cost: 4+2*B-Q+G 237: f2 -> [35] : A'=G, B'=1, C'=0, E'=free_2+free_3, F'=-(-1+Q-G)*free, H'=1+H, Q'=1+G, J'=free, K'=free_2, L'=free_3, M'=free_1, Q_1'=0, [ G>=H && G>=Q && 1+H>=1+G && G>=1 && 0>=1+free_2+free_3 && B>=2 && 0>=1+free_1 ], cost: 4+2*B-Q+G 238: f2 -> [36] : A'=G, B'=1, C'=0, E'=free_2+free_3, F'=-(-1+Q-G)*free, H'=1+H, Q'=1+G, J'=free, K'=free_2, L'=free_3, M'=free_1, Q_1'=0, [ G>=H && G>=Q && 1+H>=1+G && G>=1 && 0>=1+free_2+free_3 && B>=2 && 0>=1+free_1 ], cost: 4+2*B-Q+G 239: f2 -> [37] : A'=G, B'=1, C'=0, E'=free_2+free_3, F'=-(-1+Q-G)*free, H'=1+H, Q'=1+G, J'=free, K'=free_2, L'=free_3, M'=free_1, Q_1'=0, [ G>=H && G>=Q && 1+H>=1+G && G>=1 && 0>=1+free_2+free_3 && B>=2 && free_1>=1 ], cost: 4+2*B-Q+G 240: f2 -> [38] : A'=G, B'=1, C'=0, E'=free_2+free_3, F'=-(-1+Q-G)*free, H'=1+H, Q'=1+G, J'=free, K'=free_2, L'=free_3, M'=free_1, Q_1'=0, [ G>=H && G>=Q && 1+H>=1+G && G>=1 && 0>=1+free_2+free_3 && B>=2 && free_1>=1 ], cost: 4+2*B-Q+G 241: f2 -> [39] : A'=G, B'=1, C'=0, E'=free_2+free_3, F'=-(-1+Q-G)*free, H'=1+H, Q'=1+G, J'=free, K'=free_2, L'=free_3, M'=free_1, Q_1'=0, [ G>=H && G>=Q && 1+H>=1+G && G>=1 && 0>=1+free_2+free_3 && B>=2 && free_1>=1 ], cost: 4+2*B-Q+G 242: f2 -> [40] : A'=G, B'=1, C'=0, E'=free_5+free_6, F'=-(-1+Q-G)*free, H'=1+H, Q'=1+G, J'=free, K'=free_5, L'=free_6, M'=free_4, Q_1'=0, [ G>=H && G>=Q && 1+H>=1+G && G>=1 && free_5+free_6>=1 && B>=2 && 0>=1+free_4 ], cost: 4+2*B-Q+G 243: f2 -> [41] : A'=G, B'=1, C'=0, E'=free_5+free_6, F'=-(-1+Q-G)*free, H'=1+H, Q'=1+G, J'=free, K'=free_5, L'=free_6, M'=free_4, Q_1'=0, [ G>=H && G>=Q && 1+H>=1+G && G>=1 && free_5+free_6>=1 && B>=2 && 0>=1+free_4 ], cost: 4+2*B-Q+G 244: f2 -> [42] : A'=G, B'=1, C'=0, E'=free_5+free_6, F'=-(-1+Q-G)*free, H'=1+H, Q'=1+G, J'=free, K'=free_5, L'=free_6, M'=free_4, Q_1'=0, [ G>=H && G>=Q && 1+H>=1+G && G>=1 && free_5+free_6>=1 && B>=2 && 0>=1+free_4 ], cost: 4+2*B-Q+G 245: f2 -> [43] : A'=G, B'=1, C'=0, E'=free_5+free_6, F'=-(-1+Q-G)*free, H'=1+H, Q'=1+G, J'=free, K'=free_5, L'=free_6, M'=free_4, Q_1'=0, [ G>=H && G>=Q && 1+H>=1+G && G>=1 && free_5+free_6>=1 && B>=2 && free_4>=1 ], cost: 4+2*B-Q+G 246: f2 -> [44] : A'=G, B'=1, C'=0, E'=free_5+free_6, F'=-(-1+Q-G)*free, H'=1+H, Q'=1+G, J'=free, K'=free_5, L'=free_6, M'=free_4, Q_1'=0, [ G>=H && G>=Q && 1+H>=1+G && G>=1 && free_5+free_6>=1 && B>=2 && free_4>=1 ], cost: 4+2*B-Q+G 247: f2 -> [45] : A'=G, B'=1, C'=0, E'=free_5+free_6, F'=-(-1+Q-G)*free, H'=1+H, Q'=1+G, J'=free, K'=free_5, L'=free_6, M'=free_4, Q_1'=0, [ G>=H && G>=Q && 1+H>=1+G && G>=1 && free_5+free_6>=1 && B>=2 && free_4>=1 ], cost: 4+2*B-Q+G 248: f2 -> [46] : A'=G, B'=1, C'=0, E'=-(-1+Q-G)*free, F'=-(-1+Q-G)*free, H'=1+H, Q'=1+G, J'=free, K'=-free_7, L'=free_7, M'=free_8, Q_1'=0, [ G>=H && G>=Q && 1+H>=1+G && G>=1 && B>=2 && free_8>=1 ], cost: 4+2*B-Q+G 249: f2 -> [47] : A'=G, B'=1, C'=0, E'=-(-1+Q-G)*free, F'=-(-1+Q-G)*free, H'=1+H, Q'=1+G, J'=free, K'=-free_7, L'=free_7, M'=free_8, Q_1'=0, [ G>=H && G>=Q && 1+H>=1+G && G>=1 && B>=2 && free_8>=1 ], cost: 4+2*B-Q+G 250: f2 -> [48] : A'=G, B'=1, C'=0, E'=-(-1+Q-G)*free, F'=-(-1+Q-G)*free, H'=1+H, Q'=1+G, J'=free, K'=-free_7, L'=free_7, M'=free_8, Q_1'=0, [ G>=H && G>=Q && 1+H>=1+G && G>=1 && B>=2 && free_8>=1 ], cost: 4+2*B-Q+G 180: f34 -> f77 : D'=free_12, O'=free_13, P'=free_10*free_11, [ A>=1+B && A>=2+B && 29>=C && 9>=C ], cost: 4 181: f34 -> f77 : D'=free_12, O'=free_13, P'=free_10*free_11, [ A>=1+B && A>=2+B && 29>=C && C>=11 ], cost: 4 183: f34 -> f77 : C'=30, D'=free_12, O'=free_13, P'=free_10*free_11, [ A>=1+B && A>=2+B && C==30 && 30>=11 ], cost: 4 185: f34 -> f77 : D'=free_16, O'=free_17, P'=free_14*free_15, [ B>=1+A && B>=A && 29>=C && 9>=C ], cost: 4 186: f34 -> f77 : D'=free_16, O'=free_17, P'=free_14*free_15, [ B>=1+A && B>=A && 29>=C && C>=11 ], cost: 4 80: f80 -> f93 : C'=1+C, D'=3*free_226, E'=4*free_226, H'=1+A, J'=free_226, O'=3*free_226, P'=free_225, Z1'=4*free_226-free_227, A2'=free_227, [ A>=H && 1+A>=1+A ], cost: 2-H+A 196: f93 -> f124 : E'=free_207+free_211+free_212, R'=free_210, S'=free_206, V'=free_208, C1'=B, D1'=free_209, E1'=free_211, F1'=free_212, G1'=free_207, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && 0>=1+free_55*free_62+free_65*free_62 && free_223>=free_212*free_219+free_211*free_219+free_207*free_219 && free_212*free_219+free_211*free_219+free_207*free_219+free_219>=1+free_223 && free_219>=free_209 && free_223>=free_212*free_213+free_207*free_213+free_211*free_213 && free_212*free_213+free_207*free_213+free_211*free_213+free_213>=1+free_223 && free_209>=free_213 && free_208^2+O*D>=O*free_208+free_208*D+P+free_222*free_216 && O*free_208+free_208*D+P+free_216+free_222*free_216>=1+free_208^2+O*D && free_218+free_216>=free_214*free_212+free_207*free_214+free_214*free_211 && free_214*free_212+free_214+free_207*free_214+free_214*free_211>=1+free_218+free_216 && free_214>=free_210 && free_208^2+O*D>=O*free_208+free_224*free_222+free_208*D+P && O*free_208+free_224*free_222+free_208*D+free_224+P>=1+free_208^2+O*D && free_224+free_218>=free_207*free_220+free_220*free_211+free_220*free_212 && free_220+free_207*free_220+free_220*free_211+free_220*free_212>=1+free_224+free_218 && free_210>=free_220 && free_208+free_221>=free_217*free_211+free_207*free_217+O+free_217*free_212+D && free_217*free_211+free_217+free_207*free_217+O+free_217*free_212+D>=1+free_208+free_221 && free_217>=free_206 && free_208+free_221>=free_211*free_215+free_207*free_215+free_215*free_212+O+D && free_211*free_215+free_207*free_215+free_215*free_212+O+free_215+D>=1+free_208+free_221 && free_206>=free_215 && B==-1+C1 ], cost: 3 197: f93 -> f124 : E'=free_59+free_53+free_63, R'=free_58, S'=free_52, V'=free_54, C1'=-1+C1, D1'=free_56, E1'=free_59, F1'=free_63, G1'=free_53, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && 0>=1+free_55*free_62+free_65*free_62 && free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && -1+C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 ], cost: 4 198: f93 -> f124 : E'=free_207+free_211+free_212, R'=free_210, S'=free_206, V'=free_208, C1'=B, D1'=free_209, E1'=free_211, F1'=free_212, G1'=free_207, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_55*free_62+free_65*free_62>=1 && free_223>=free_212*free_219+free_211*free_219+free_207*free_219 && free_212*free_219+free_211*free_219+free_207*free_219+free_219>=1+free_223 && free_219>=free_209 && free_223>=free_212*free_213+free_207*free_213+free_211*free_213 && free_212*free_213+free_207*free_213+free_211*free_213+free_213>=1+free_223 && free_209>=free_213 && free_208^2+O*D>=O*free_208+free_208*D+P+free_222*free_216 && O*free_208+free_208*D+P+free_216+free_222*free_216>=1+free_208^2+O*D && free_218+free_216>=free_214*free_212+free_207*free_214+free_214*free_211 && free_214*free_212+free_214+free_207*free_214+free_214*free_211>=1+free_218+free_216 && free_214>=free_210 && free_208^2+O*D>=O*free_208+free_224*free_222+free_208*D+P && O*free_208+free_224*free_222+free_208*D+free_224+P>=1+free_208^2+O*D && free_224+free_218>=free_207*free_220+free_220*free_211+free_220*free_212 && free_220+free_207*free_220+free_220*free_211+free_220*free_212>=1+free_224+free_218 && free_210>=free_220 && free_208+free_221>=free_217*free_211+free_207*free_217+O+free_217*free_212+D && free_217*free_211+free_217+free_207*free_217+O+free_217*free_212+D>=1+free_208+free_221 && free_217>=free_206 && free_208+free_221>=free_211*free_215+free_207*free_215+free_215*free_212+O+D && free_211*free_215+free_207*free_215+free_215*free_212+O+free_215+D>=1+free_208+free_221 && free_206>=free_215 && B==-1+C1 ], cost: 3 199: f93 -> f124 : E'=free_59+free_53+free_63, R'=free_58, S'=free_52, V'=free_54, C1'=-1+C1, D1'=free_56, E1'=free_59, F1'=free_63, G1'=free_53, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_55*free_62+free_65*free_62>=1 && free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && -1+C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 ], cost: 4 200: f93 -> f124 : [ B>=1+C1 ], cost: 1 117: f124 -> f132 : H'=3+C1, [ A>=2+C1 && H==2+C1 && 3+C1>=1+A ], cost: 4-H+C1 118: f124 -> f132 : H'=1+H, [ 1+C1>=H && A>=H && 1+H>=1+A ], cost: 2 119: f124 -> f132 : H'=1+A, [ H>=3+C1 && A>=H && 1+A>=1+A ], cost: 2-H+A 120: f124 -> f132 : [ H>=1+A ], cost: 1 42: f132 -> f148 : Q1_1'=C1, [ A>=1+Q1_1 && C1==Q1_1 ], cost: 1 203: f132 -> f148 : D'=0, R'=free_78, S'=free_79, D1'=0, Q1_1'=-1+A, R1'=free_83, S1'=free_84, T1'=free_82, [ C1>=1+Q1_1 && A>=1+Q1_1 && 1+Q1_1==A && free_84+free_82+free_83==0 ], cost: 3 205: f132 -> f148 : D'=free_87+free_88+free_85, R'=free_94, S'=free_95, D1'=free_93, R1'=free_87, S1'=free_88, T1'=free_85, [ C1>=1+Q1_1 && A>=1+Q1_1 && A>=2+Q1_1 && free_86>=(free_87+free_88+free_85)*free_99 && (free_87+free_88+free_85)*free_99+free_99>=1+free_86 && free_99>=free_93 && free_86>=free_96*(free_87+free_88+free_85) && free_96+free_96*(free_87+free_88+free_85)>=1+free_86 && free_93>=free_96 && free_79>=(free_87+free_88+free_85)*free_97 && free_97+(free_87+free_88+free_85)*free_97>=1+free_79 && free_97>=free_95 && free_79>=(free_87+free_88+free_85)*free_98 && (free_87+free_88+free_85)*free_98+free_98>=1+free_79 && free_95>=free_98 && 0>=1+free_87+free_88+free_85 && free_78>=(free_87+free_88+free_85)*free_100 && free_100+(free_87+free_88+free_85)*free_100>=1+free_78 && free_100>=free_94 && free_78>=(free_87+free_88+free_85)*free_101 && (free_87+free_88+free_85)*free_101+free_101>=1+free_78 && free_94>=free_101 ], cost: 3 206: f132 -> f148 : D'=free_87+free_88+free_85, R'=free_103, S'=free_104, D1'=free_102, R1'=free_87, S1'=free_88, T1'=free_85, [ C1>=1+Q1_1 && A>=1+Q1_1 && A>=2+Q1_1 && free_86>=(free_87+free_88+free_85)*free_108 && (free_87+free_88+free_85)*free_108+free_108>=1+free_86 && free_108>=free_102 && free_86>=(free_87+free_88+free_85)*free_105 && (free_87+free_88+free_85)*free_105+free_105>=1+free_86 && free_102>=free_105 && free_79>=(free_87+free_88+free_85)*free_106 && free_106+(free_87+free_88+free_85)*free_106>=1+free_79 && free_106>=free_104 && free_79>=(free_87+free_88+free_85)*free_107 && free_107+(free_87+free_88+free_85)*free_107>=1+free_79 && free_104>=free_107 && free_87+free_88+free_85>=1 && free_78>=free_109*(free_87+free_88+free_85) && free_109+free_109*(free_87+free_88+free_85)>=1+free_78 && free_109>=free_103 && free_78>=(free_87+free_88+free_85)*free_110 && (free_87+free_88+free_85)*free_110+free_110>=1+free_78 && free_103>=free_110 ], cost: 3 208: f132 -> f148 : D'=0, R'=free_80, S'=free_81, D1'=free_86, R1'=free_87, S1'=free_88, T1'=free_85, [ Q1_1>=1+C1 && A>=1+Q1_1 && A>=2+Q1_1 && free_87+free_88+free_85==0 ], cost: 3 226: [29] -> f132 : H'=1+A, R'=free_198*D+O*free_199, Q1_1'=A, Y1'=A, [ Q>=1+A && 2+Q1_1>=A && A>=H && 1+Q1_1==A && 1+A>=1+A ], cost: 3-H+A 227: [29] -> f132 : H'=1+A, R'=free_201*D+free_200*V+O*free_202, Q1_1'=1+Q1_1, Y1'=A, [ Q>=1+A && 2+Q1_1>=A && A>=2+Q1_1 && A>=H && 1+A>=1+A ], cost: 3-H+A 228: [29] -> f132 : H'=1+A, R'=V*free_203+free_204*D+O*free_205, Q1_1'=1+Q1_1, Y1'=A, [ Q>=1+A && 2+Q1_1>=A && Q1_1>=A && A>=H && 1+A>=1+A ], cost: 3-H+A 229: [29] -> f132 : H'=4+Q1_1, R'=free_201*D+free_200*V+O*free_202, Q1_1'=1+Q1_1, Y1'=3+Q1_1, [ Q>=1+A && A>=3+Q1_1 && A>=2+Q1_1 && 3+Q1_1>=H && 4+Q1_1>=4+Q1_1 ], cost: 6-H+Q1_1 Performed chaining from the start location: Start location: f2 30: f77 -> f80 : C'=20, Q_1'=Q_1+D, [ C==20 ], cost: 1 211: f148 -> [29] : D'=free_118, E'=free_111, Q'=1+A, O'=free_119, R'=free_191*free_116+free_190, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=-1+A, U1'=free_112, V1'=free_111, [ R>=0 && 0>=1+free_111 && D1>=R*free_120+free_111*free_120 && R*free_120+free_120+free_111*free_120>=1+D1 && free_120>=free_115 && D1>=free_111*free_122+R*free_122 && free_122+free_111*free_122+R*free_122>=1+D1 && free_115>=free_122 && D1>=free_111*free_126 && free_126+free_111*free_126>=1+D1 && free_126>=free_117 && D1>=free_111*free_128 && free_128+free_111*free_128>=1+D1 && free_117>=free_128 && S>=free_111*free_121+free_121*R && free_121+free_111*free_121+free_121*R>=1+S && free_121>=free_116 && S>=free_111*free_124+free_124*R && free_124+free_111*free_124+free_124*R>=1+S && free_116>=free_124 && free_111+R>=free_111*free_127 && free_127+free_111*free_127>=1+free_111+R && free_127>=free_118 && free_111+R>=free_111*free_123 && free_111*free_123+free_123>=1+free_111+R && free_118>=free_123 && S>=free_111*free_125 && free_125+free_111*free_125>=1+S && free_125>=free_119 && S>=free_111*free_129 && free_111*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=Q && 1+B==A ], cost: 4-Q+A 212: f148 -> [29] : D'=free_118, E'=free_111, Q'=1+A, O'=free_119, R'=free_194*free_116+free_115*free_192+free_193, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=B, U1'=free_112, V1'=free_111, [ R>=0 && 0>=1+free_111 && D1>=R*free_120+free_111*free_120 && R*free_120+free_120+free_111*free_120>=1+D1 && free_120>=free_115 && D1>=free_111*free_122+R*free_122 && free_122+free_111*free_122+R*free_122>=1+D1 && free_115>=free_122 && D1>=free_111*free_126 && free_126+free_111*free_126>=1+D1 && free_126>=free_117 && D1>=free_111*free_128 && free_128+free_111*free_128>=1+D1 && free_117>=free_128 && S>=free_111*free_121+free_121*R && free_121+free_111*free_121+free_121*R>=1+S && free_121>=free_116 && S>=free_111*free_124+free_124*R && free_124+free_111*free_124+free_124*R>=1+S && free_116>=free_124 && free_111+R>=free_111*free_127 && free_127+free_111*free_127>=1+free_111+R && free_127>=free_118 && free_111+R>=free_111*free_123 && free_111*free_123+free_123>=1+free_111+R && free_118>=free_123 && S>=free_111*free_125 && free_125+free_111*free_125>=1+S && free_125>=free_119 && S>=free_111*free_129 && free_111*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=2+B && A>=Q ], cost: 4-Q+A 213: f148 -> [29] : D'=free_133, E'=free_111, Q'=1+A, O'=free_134, R'=free_190+free_191*free_131, S'=free_131, V'=free_132, D1'=free_130, Q1_1'=-1+A, U1'=free_112, V1'=free_111, [ R>=0 && 0>=1+free_111 && Q1_1>=1+B && D1>=R*free_135+free_111*free_135 && R*free_135+free_111*free_135+free_135>=1+D1 && free_135>=free_130 && D1>=free_111*free_137+free_137*R && free_111*free_137+free_137+free_137*R>=1+D1 && free_130>=free_137 && D1>=free_111*free_141 && free_141+free_111*free_141>=1+D1 && free_141>=free_132 && D1>=free_111*free_143 && free_111*free_143+free_143>=1+D1 && free_132>=free_143 && S>=R*free_136+free_111*free_136 && R*free_136+free_136+free_111*free_136>=1+S && free_136>=free_131 && S>=R*free_139+free_111*free_139 && R*free_139+free_139+free_111*free_139>=1+S && free_131>=free_139 && free_111+R>=free_111*free_142 && free_111*free_142+free_142>=1+free_111+R && free_142>=free_133 && free_111+R>=free_111*free_138 && free_138+free_111*free_138>=1+free_111+R && free_133>=free_138 && S>=free_111*free_140 && free_140+free_111*free_140>=1+S && free_140>=free_134 && S>=free_111*free_144 && free_111*free_144+free_144>=1+S && free_134>=free_144 && C1==Q1_1 && A>=Q && 1+C1==A ], cost: 4-Q+A 214: f148 -> [29] : D'=free_148, E'=free_111, Q'=1+A, O'=free_149, R'=free_194*free_146+free_145*free_192+free_193, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, U1'=free_112, V1'=free_111, [ R>=0 && 0>=1+free_111 && B>=1+Q1_1 && D1>=free_111*free_150+free_150*R && free_150+free_111*free_150+free_150*R>=1+D1 && free_150>=free_145 && D1>=free_111*free_152+R*free_152 && free_111*free_152+R*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=free_111*free_156 && free_111*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=free_111*free_158 && free_111*free_158+free_158>=1+D1 && free_147>=free_158 && S>=R*free_151+free_111*free_151 && free_151+R*free_151+free_111*free_151>=1+S && free_151>=free_146 && S>=free_154*R+free_111*free_154 && free_154+free_154*R+free_111*free_154>=1+S && free_146>=free_154 && free_111+R>=free_111*free_157 && free_157+free_111*free_157>=1+free_111+R && free_157>=free_148 && free_111+R>=free_111*free_153 && free_111*free_153+free_153>=1+free_111+R && free_148>=free_153 && S>=free_111*free_155 && free_111*free_155+free_155>=1+S && free_155>=free_149 && S>=free_111*free_159 && free_111*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && A>=2+C1 && A>=Q ], cost: 4-Q+A 215: f148 -> [29] : D'=free_148, E'=free_111, Q'=1+A, O'=free_149, R'=free_145*free_195+free_197*free_146+free_196, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, U1'=free_112, V1'=free_111, [ R>=0 && 0>=1+free_111 && B>=1+Q1_1 && D1>=free_111*free_150+free_150*R && free_150+free_111*free_150+free_150*R>=1+D1 && free_150>=free_145 && D1>=free_111*free_152+R*free_152 && free_111*free_152+R*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=free_111*free_156 && free_111*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=free_111*free_158 && free_111*free_158+free_158>=1+D1 && free_147>=free_158 && S>=R*free_151+free_111*free_151 && free_151+R*free_151+free_111*free_151>=1+S && free_151>=free_146 && S>=free_154*R+free_111*free_154 && free_154+free_154*R+free_111*free_154>=1+S && free_146>=free_154 && free_111+R>=free_111*free_157 && free_157+free_111*free_157>=1+free_111+R && free_157>=free_148 && free_111+R>=free_111*free_153 && free_111*free_153+free_153>=1+free_111+R && free_148>=free_153 && S>=free_111*free_155 && free_111*free_155+free_155>=1+S && free_155>=free_149 && S>=free_111*free_159 && free_111*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && C1>=A && A>=Q ], cost: 4-Q+A 216: f148 -> [29] : D'=free_118, E'=free_111, Q'=1+A, O'=free_119, R'=free_191*free_116+free_190, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=-1+A, U1'=free_112, V1'=free_111, [ R>=0 && free_111>=1 && D1>=R*free_120+free_111*free_120 && R*free_120+free_120+free_111*free_120>=1+D1 && free_120>=free_115 && D1>=free_111*free_122+R*free_122 && free_122+free_111*free_122+R*free_122>=1+D1 && free_115>=free_122 && D1>=free_111*free_126 && free_126+free_111*free_126>=1+D1 && free_126>=free_117 && D1>=free_111*free_128 && free_128+free_111*free_128>=1+D1 && free_117>=free_128 && S>=free_111*free_121+free_121*R && free_121+free_111*free_121+free_121*R>=1+S && free_121>=free_116 && S>=free_111*free_124+free_124*R && free_124+free_111*free_124+free_124*R>=1+S && free_116>=free_124 && free_111+R>=free_111*free_127 && free_127+free_111*free_127>=1+free_111+R && free_127>=free_118 && free_111+R>=free_111*free_123 && free_111*free_123+free_123>=1+free_111+R && free_118>=free_123 && S>=free_111*free_125 && free_125+free_111*free_125>=1+S && free_125>=free_119 && S>=free_111*free_129 && free_111*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=Q && 1+B==A ], cost: 4-Q+A 217: f148 -> [29] : D'=free_118, E'=free_111, Q'=1+A, O'=free_119, R'=free_194*free_116+free_115*free_192+free_193, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=B, U1'=free_112, V1'=free_111, [ R>=0 && free_111>=1 && D1>=R*free_120+free_111*free_120 && R*free_120+free_120+free_111*free_120>=1+D1 && free_120>=free_115 && D1>=free_111*free_122+R*free_122 && free_122+free_111*free_122+R*free_122>=1+D1 && free_115>=free_122 && D1>=free_111*free_126 && free_126+free_111*free_126>=1+D1 && free_126>=free_117 && D1>=free_111*free_128 && free_128+free_111*free_128>=1+D1 && free_117>=free_128 && S>=free_111*free_121+free_121*R && free_121+free_111*free_121+free_121*R>=1+S && free_121>=free_116 && S>=free_111*free_124+free_124*R && free_124+free_111*free_124+free_124*R>=1+S && free_116>=free_124 && free_111+R>=free_111*free_127 && free_127+free_111*free_127>=1+free_111+R && free_127>=free_118 && free_111+R>=free_111*free_123 && free_111*free_123+free_123>=1+free_111+R && free_118>=free_123 && S>=free_111*free_125 && free_125+free_111*free_125>=1+S && free_125>=free_119 && S>=free_111*free_129 && free_111*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=2+B && A>=Q ], cost: 4-Q+A 218: f148 -> [29] : D'=free_133, E'=free_111, Q'=1+A, O'=free_134, R'=free_190+free_191*free_131, S'=free_131, V'=free_132, D1'=free_130, Q1_1'=-1+A, U1'=free_112, V1'=free_111, [ R>=0 && free_111>=1 && Q1_1>=1+B && D1>=R*free_135+free_111*free_135 && R*free_135+free_111*free_135+free_135>=1+D1 && free_135>=free_130 && D1>=free_111*free_137+free_137*R && free_111*free_137+free_137+free_137*R>=1+D1 && free_130>=free_137 && D1>=free_111*free_141 && free_141+free_111*free_141>=1+D1 && free_141>=free_132 && D1>=free_111*free_143 && free_111*free_143+free_143>=1+D1 && free_132>=free_143 && S>=R*free_136+free_111*free_136 && R*free_136+free_136+free_111*free_136>=1+S && free_136>=free_131 && S>=R*free_139+free_111*free_139 && R*free_139+free_139+free_111*free_139>=1+S && free_131>=free_139 && free_111+R>=free_111*free_142 && free_111*free_142+free_142>=1+free_111+R && free_142>=free_133 && free_111+R>=free_111*free_138 && free_138+free_111*free_138>=1+free_111+R && free_133>=free_138 && S>=free_111*free_140 && free_140+free_111*free_140>=1+S && free_140>=free_134 && S>=free_111*free_144 && free_111*free_144+free_144>=1+S && free_134>=free_144 && C1==Q1_1 && A>=Q && 1+C1==A ], cost: 4-Q+A 219: f148 -> [29] : D'=free_148, E'=free_111, Q'=1+A, O'=free_149, R'=free_194*free_146+free_145*free_192+free_193, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, U1'=free_112, V1'=free_111, [ R>=0 && free_111>=1 && B>=1+Q1_1 && D1>=free_111*free_150+free_150*R && free_150+free_111*free_150+free_150*R>=1+D1 && free_150>=free_145 && D1>=free_111*free_152+R*free_152 && free_111*free_152+R*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=free_111*free_156 && free_111*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=free_111*free_158 && free_111*free_158+free_158>=1+D1 && free_147>=free_158 && S>=R*free_151+free_111*free_151 && free_151+R*free_151+free_111*free_151>=1+S && free_151>=free_146 && S>=free_154*R+free_111*free_154 && free_154+free_154*R+free_111*free_154>=1+S && free_146>=free_154 && free_111+R>=free_111*free_157 && free_157+free_111*free_157>=1+free_111+R && free_157>=free_148 && free_111+R>=free_111*free_153 && free_111*free_153+free_153>=1+free_111+R && free_148>=free_153 && S>=free_111*free_155 && free_111*free_155+free_155>=1+S && free_155>=free_149 && S>=free_111*free_159 && free_111*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && A>=2+C1 && A>=Q ], cost: 4-Q+A 220: f148 -> [29] : D'=free_148, E'=free_111, Q'=1+A, O'=free_149, R'=free_145*free_195+free_197*free_146+free_196, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, U1'=free_112, V1'=free_111, [ R>=0 && free_111>=1 && B>=1+Q1_1 && D1>=free_111*free_150+free_150*R && free_150+free_111*free_150+free_150*R>=1+D1 && free_150>=free_145 && D1>=free_111*free_152+R*free_152 && free_111*free_152+R*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=free_111*free_156 && free_111*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=free_111*free_158 && free_111*free_158+free_158>=1+D1 && free_147>=free_158 && S>=R*free_151+free_111*free_151 && free_151+R*free_151+free_111*free_151>=1+S && free_151>=free_146 && S>=free_154*R+free_111*free_154 && free_154+free_154*R+free_111*free_154>=1+S && free_146>=free_154 && free_111+R>=free_111*free_157 && free_157+free_111*free_157>=1+free_111+R && free_157>=free_148 && free_111+R>=free_111*free_153 && free_111*free_153+free_153>=1+free_111+R && free_148>=free_153 && S>=free_111*free_155 && free_111*free_155+free_155>=1+S && free_155>=free_149 && S>=free_111*free_159 && free_111*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && C1>=A && A>=Q ], cost: 4-Q+A 221: f148 -> [29] : D'=free_118, E'=-free_113, Q'=1+A, O'=free_119, R'=free_191*free_116+free_190, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=-1+A, W1'=free_114, X1'=free_113, [ 0>=1+R && 0>=1-free_113 && D1>=-free_113*free_120+R*free_120 && -free_113*free_120+R*free_120+free_120>=1+D1 && free_120>=free_115 && D1>=-free_122*free_113+R*free_122 && free_122-free_122*free_113+R*free_122>=1+D1 && free_115>=free_122 && D1>=-free_113*free_126 && -free_113*free_126+free_126>=1+D1 && free_126>=free_117 && D1>=-free_128*free_113 && free_128-free_128*free_113>=1+D1 && free_117>=free_128 && S>=-free_121*free_113+free_121*R && free_121-free_121*free_113+free_121*R>=1+S && free_121>=free_116 && S>=-free_124*free_113+free_124*R && free_124-free_124*free_113+free_124*R>=1+S && free_116>=free_124 && R-free_113>=-free_127*free_113 && free_127-free_127*free_113>=1+R-free_113 && free_127>=free_118 && R-free_113>=-free_113*free_123 && -free_113*free_123+free_123>=1+R-free_113 && free_118>=free_123 && S>=-free_125*free_113 && -free_125*free_113+free_125>=1+S && free_125>=free_119 && S>=-free_113*free_129 && -free_113*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=Q && 1+B==A ], cost: 4-Q+A 222: f148 -> [29] : D'=free_118, E'=-free_113, Q'=1+A, O'=free_119, R'=free_194*free_116+free_115*free_192+free_193, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=B, W1'=free_114, X1'=free_113, [ 0>=1+R && 0>=1-free_113 && D1>=-free_113*free_120+R*free_120 && -free_113*free_120+R*free_120+free_120>=1+D1 && free_120>=free_115 && D1>=-free_122*free_113+R*free_122 && free_122-free_122*free_113+R*free_122>=1+D1 && free_115>=free_122 && D1>=-free_113*free_126 && -free_113*free_126+free_126>=1+D1 && free_126>=free_117 && D1>=-free_128*free_113 && free_128-free_128*free_113>=1+D1 && free_117>=free_128 && S>=-free_121*free_113+free_121*R && free_121-free_121*free_113+free_121*R>=1+S && free_121>=free_116 && S>=-free_124*free_113+free_124*R && free_124-free_124*free_113+free_124*R>=1+S && free_116>=free_124 && R-free_113>=-free_127*free_113 && free_127-free_127*free_113>=1+R-free_113 && free_127>=free_118 && R-free_113>=-free_113*free_123 && -free_113*free_123+free_123>=1+R-free_113 && free_118>=free_123 && S>=-free_125*free_113 && -free_125*free_113+free_125>=1+S && free_125>=free_119 && S>=-free_113*free_129 && -free_113*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=2+B && A>=Q ], cost: 4-Q+A 223: f148 -> [29] : D'=free_133, E'=-free_113, Q'=1+A, O'=free_134, R'=free_190+free_191*free_131, S'=free_131, V'=free_132, D1'=free_130, Q1_1'=-1+A, W1'=free_114, X1'=free_113, [ 0>=1+R && 0>=1-free_113 && Q1_1>=1+B && D1>=R*free_135-free_135*free_113 && R*free_135-free_135*free_113+free_135>=1+D1 && free_135>=free_130 && D1>=free_137*R-free_137*free_113 && free_137+free_137*R-free_137*free_113>=1+D1 && free_130>=free_137 && D1>=-free_141*free_113 && free_141-free_141*free_113>=1+D1 && free_141>=free_132 && D1>=-free_113*free_143 && -free_113*free_143+free_143>=1+D1 && free_132>=free_143 && S>=-free_113*free_136+R*free_136 && -free_113*free_136+R*free_136+free_136>=1+S && free_136>=free_131 && S>=-free_113*free_139+R*free_139 && -free_113*free_139+R*free_139+free_139>=1+S && free_131>=free_139 && R-free_113>=-free_142*free_113 && -free_142*free_113+free_142>=1+R-free_113 && free_142>=free_133 && R-free_113>=-free_138*free_113 && free_138-free_138*free_113>=1+R-free_113 && free_133>=free_138 && S>=-free_140*free_113 && free_140-free_140*free_113>=1+S && free_140>=free_134 && S>=-free_144*free_113 && free_144-free_144*free_113>=1+S && free_134>=free_144 && C1==Q1_1 && A>=Q && 1+C1==A ], cost: 4-Q+A 224: f148 -> [29] : D'=free_148, E'=-free_113, Q'=1+A, O'=free_149, R'=free_194*free_146+free_145*free_192+free_193, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, W1'=free_114, X1'=free_113, [ 0>=1+R && 0>=1-free_113 && B>=1+Q1_1 && D1>=-free_150*free_113+free_150*R && free_150-free_150*free_113+free_150*R>=1+D1 && free_150>=free_145 && D1>=R*free_152-free_113*free_152 && R*free_152-free_113*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=-free_113*free_156 && -free_113*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=-free_113*free_158 && -free_113*free_158+free_158>=1+D1 && free_147>=free_158 && S>=-free_151*free_113+R*free_151 && free_151-free_151*free_113+R*free_151>=1+S && free_151>=free_146 && S>=-free_154*free_113+free_154*R && -free_154*free_113+free_154+free_154*R>=1+S && free_146>=free_154 && R-free_113>=-free_157*free_113 && free_157-free_157*free_113>=1+R-free_113 && free_157>=free_148 && R-free_113>=-free_113*free_153 && -free_113*free_153+free_153>=1+R-free_113 && free_148>=free_153 && S>=-free_155*free_113 && -free_155*free_113+free_155>=1+S && free_155>=free_149 && S>=-free_113*free_159 && -free_113*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && A>=2+C1 && A>=Q ], cost: 4-Q+A 225: f148 -> [29] : D'=free_148, E'=-free_113, Q'=1+A, O'=free_149, R'=free_145*free_195+free_197*free_146+free_196, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, W1'=free_114, X1'=free_113, [ 0>=1+R && 0>=1-free_113 && B>=1+Q1_1 && D1>=-free_150*free_113+free_150*R && free_150-free_150*free_113+free_150*R>=1+D1 && free_150>=free_145 && D1>=R*free_152-free_113*free_152 && R*free_152-free_113*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=-free_113*free_156 && -free_113*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=-free_113*free_158 && -free_113*free_158+free_158>=1+D1 && free_147>=free_158 && S>=-free_151*free_113+R*free_151 && free_151-free_151*free_113+R*free_151>=1+S && free_151>=free_146 && S>=-free_154*free_113+free_154*R && -free_154*free_113+free_154+free_154*R>=1+S && free_146>=free_154 && R-free_113>=-free_157*free_113 && free_157-free_157*free_113>=1+R-free_113 && free_157>=free_148 && R-free_113>=-free_113*free_153 && -free_113*free_153+free_153>=1+R-free_113 && free_148>=free_153 && S>=-free_155*free_113 && -free_155*free_113+free_155>=1+S && free_155>=free_149 && S>=-free_113*free_159 && -free_113*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && C1>=A && A>=Q ], cost: 4-Q+A 251: f2 -> f77 : A'=G, B'=1, C'=0, D'=free_12, E'=free_2+free_3, F'=-(-1+Q-G)*free, H'=1+H, Q'=1+G, J'=free, K'=free_2, L'=free_3, M'=free_1, O'=free_13, P'=free_10*free_11, Q_1'=0, [ G>=H && G>=Q && 1+H>=1+G && G>=1 && 0>=1+free_2+free_3 && B>=2 && 0>=1+free_1 && 1>=1 && G>=2 && G>=3 && 29>=0 && 9>=0 ], cost: 9+2*B-Q+G 80: f80 -> f93 : C'=1+C, D'=3*free_226, E'=4*free_226, H'=1+A, J'=free_226, O'=3*free_226, P'=free_225, Z1'=4*free_226-free_227, A2'=free_227, [ A>=H && 1+A>=1+A ], cost: 2-H+A 196: f93 -> f124 : E'=free_207+free_211+free_212, R'=free_210, S'=free_206, V'=free_208, C1'=B, D1'=free_209, E1'=free_211, F1'=free_212, G1'=free_207, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && 0>=1+free_55*free_62+free_65*free_62 && free_223>=free_212*free_219+free_211*free_219+free_207*free_219 && free_212*free_219+free_211*free_219+free_207*free_219+free_219>=1+free_223 && free_219>=free_209 && free_223>=free_212*free_213+free_207*free_213+free_211*free_213 && free_212*free_213+free_207*free_213+free_211*free_213+free_213>=1+free_223 && free_209>=free_213 && free_208^2+O*D>=O*free_208+free_208*D+P+free_222*free_216 && O*free_208+free_208*D+P+free_216+free_222*free_216>=1+free_208^2+O*D && free_218+free_216>=free_214*free_212+free_207*free_214+free_214*free_211 && free_214*free_212+free_214+free_207*free_214+free_214*free_211>=1+free_218+free_216 && free_214>=free_210 && free_208^2+O*D>=O*free_208+free_224*free_222+free_208*D+P && O*free_208+free_224*free_222+free_208*D+free_224+P>=1+free_208^2+O*D && free_224+free_218>=free_207*free_220+free_220*free_211+free_220*free_212 && free_220+free_207*free_220+free_220*free_211+free_220*free_212>=1+free_224+free_218 && free_210>=free_220 && free_208+free_221>=free_217*free_211+free_207*free_217+O+free_217*free_212+D && free_217*free_211+free_217+free_207*free_217+O+free_217*free_212+D>=1+free_208+free_221 && free_217>=free_206 && free_208+free_221>=free_211*free_215+free_207*free_215+free_215*free_212+O+D && free_211*free_215+free_207*free_215+free_215*free_212+O+free_215+D>=1+free_208+free_221 && free_206>=free_215 && B==-1+C1 ], cost: 3 197: f93 -> f124 : E'=free_59+free_53+free_63, R'=free_58, S'=free_52, V'=free_54, C1'=-1+C1, D1'=free_56, E1'=free_59, F1'=free_63, G1'=free_53, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && 0>=1+free_55*free_62+free_65*free_62 && free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && -1+C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 ], cost: 4 198: f93 -> f124 : E'=free_207+free_211+free_212, R'=free_210, S'=free_206, V'=free_208, C1'=B, D1'=free_209, E1'=free_211, F1'=free_212, G1'=free_207, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_55*free_62+free_65*free_62>=1 && free_223>=free_212*free_219+free_211*free_219+free_207*free_219 && free_212*free_219+free_211*free_219+free_207*free_219+free_219>=1+free_223 && free_219>=free_209 && free_223>=free_212*free_213+free_207*free_213+free_211*free_213 && free_212*free_213+free_207*free_213+free_211*free_213+free_213>=1+free_223 && free_209>=free_213 && free_208^2+O*D>=O*free_208+free_208*D+P+free_222*free_216 && O*free_208+free_208*D+P+free_216+free_222*free_216>=1+free_208^2+O*D && free_218+free_216>=free_214*free_212+free_207*free_214+free_214*free_211 && free_214*free_212+free_214+free_207*free_214+free_214*free_211>=1+free_218+free_216 && free_214>=free_210 && free_208^2+O*D>=O*free_208+free_224*free_222+free_208*D+P && O*free_208+free_224*free_222+free_208*D+free_224+P>=1+free_208^2+O*D && free_224+free_218>=free_207*free_220+free_220*free_211+free_220*free_212 && free_220+free_207*free_220+free_220*free_211+free_220*free_212>=1+free_224+free_218 && free_210>=free_220 && free_208+free_221>=free_217*free_211+free_207*free_217+O+free_217*free_212+D && free_217*free_211+free_217+free_207*free_217+O+free_217*free_212+D>=1+free_208+free_221 && free_217>=free_206 && free_208+free_221>=free_211*free_215+free_207*free_215+free_215*free_212+O+D && free_211*free_215+free_207*free_215+free_215*free_212+O+free_215+D>=1+free_208+free_221 && free_206>=free_215 && B==-1+C1 ], cost: 3 199: f93 -> f124 : E'=free_59+free_53+free_63, R'=free_58, S'=free_52, V'=free_54, C1'=-1+C1, D1'=free_56, E1'=free_59, F1'=free_63, G1'=free_53, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_55*free_62+free_65*free_62>=1 && free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && -1+C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 ], cost: 4 200: f93 -> f124 : [ B>=1+C1 ], cost: 1 117: f124 -> f132 : H'=3+C1, [ A>=2+C1 && H==2+C1 && 3+C1>=1+A ], cost: 4-H+C1 118: f124 -> f132 : H'=1+H, [ 1+C1>=H && A>=H && 1+H>=1+A ], cost: 2 119: f124 -> f132 : H'=1+A, [ H>=3+C1 && A>=H && 1+A>=1+A ], cost: 2-H+A 120: f124 -> f132 : [ H>=1+A ], cost: 1 42: f132 -> f148 : Q1_1'=C1, [ A>=1+Q1_1 && C1==Q1_1 ], cost: 1 203: f132 -> f148 : D'=0, R'=free_78, S'=free_79, D1'=0, Q1_1'=-1+A, R1'=free_83, S1'=free_84, T1'=free_82, [ C1>=1+Q1_1 && A>=1+Q1_1 && 1+Q1_1==A && free_84+free_82+free_83==0 ], cost: 3 205: f132 -> f148 : D'=free_87+free_88+free_85, R'=free_94, S'=free_95, D1'=free_93, R1'=free_87, S1'=free_88, T1'=free_85, [ C1>=1+Q1_1 && A>=1+Q1_1 && A>=2+Q1_1 && free_86>=(free_87+free_88+free_85)*free_99 && (free_87+free_88+free_85)*free_99+free_99>=1+free_86 && free_99>=free_93 && free_86>=free_96*(free_87+free_88+free_85) && free_96+free_96*(free_87+free_88+free_85)>=1+free_86 && free_93>=free_96 && free_79>=(free_87+free_88+free_85)*free_97 && free_97+(free_87+free_88+free_85)*free_97>=1+free_79 && free_97>=free_95 && free_79>=(free_87+free_88+free_85)*free_98 && (free_87+free_88+free_85)*free_98+free_98>=1+free_79 && free_95>=free_98 && 0>=1+free_87+free_88+free_85 && free_78>=(free_87+free_88+free_85)*free_100 && free_100+(free_87+free_88+free_85)*free_100>=1+free_78 && free_100>=free_94 && free_78>=(free_87+free_88+free_85)*free_101 && (free_87+free_88+free_85)*free_101+free_101>=1+free_78 && free_94>=free_101 ], cost: 3 206: f132 -> f148 : D'=free_87+free_88+free_85, R'=free_103, S'=free_104, D1'=free_102, R1'=free_87, S1'=free_88, T1'=free_85, [ C1>=1+Q1_1 && A>=1+Q1_1 && A>=2+Q1_1 && free_86>=(free_87+free_88+free_85)*free_108 && (free_87+free_88+free_85)*free_108+free_108>=1+free_86 && free_108>=free_102 && free_86>=(free_87+free_88+free_85)*free_105 && (free_87+free_88+free_85)*free_105+free_105>=1+free_86 && free_102>=free_105 && free_79>=(free_87+free_88+free_85)*free_106 && free_106+(free_87+free_88+free_85)*free_106>=1+free_79 && free_106>=free_104 && free_79>=(free_87+free_88+free_85)*free_107 && free_107+(free_87+free_88+free_85)*free_107>=1+free_79 && free_104>=free_107 && free_87+free_88+free_85>=1 && free_78>=free_109*(free_87+free_88+free_85) && free_109+free_109*(free_87+free_88+free_85)>=1+free_78 && free_109>=free_103 && free_78>=(free_87+free_88+free_85)*free_110 && (free_87+free_88+free_85)*free_110+free_110>=1+free_78 && free_103>=free_110 ], cost: 3 208: f132 -> f148 : D'=0, R'=free_80, S'=free_81, D1'=free_86, R1'=free_87, S1'=free_88, T1'=free_85, [ Q1_1>=1+C1 && A>=1+Q1_1 && A>=2+Q1_1 && free_87+free_88+free_85==0 ], cost: 3 226: [29] -> f132 : H'=1+A, R'=free_198*D+O*free_199, Q1_1'=A, Y1'=A, [ Q>=1+A && 2+Q1_1>=A && A>=H && 1+Q1_1==A && 1+A>=1+A ], cost: 3-H+A 227: [29] -> f132 : H'=1+A, R'=free_201*D+free_200*V+O*free_202, Q1_1'=1+Q1_1, Y1'=A, [ Q>=1+A && 2+Q1_1>=A && A>=2+Q1_1 && A>=H && 1+A>=1+A ], cost: 3-H+A 228: [29] -> f132 : H'=1+A, R'=V*free_203+free_204*D+O*free_205, Q1_1'=1+Q1_1, Y1'=A, [ Q>=1+A && 2+Q1_1>=A && Q1_1>=A && A>=H && 1+A>=1+A ], cost: 3-H+A 229: [29] -> f132 : H'=4+Q1_1, R'=free_201*D+free_200*V+O*free_202, Q1_1'=1+Q1_1, Y1'=3+Q1_1, [ Q>=1+A && A>=3+Q1_1 && A>=2+Q1_1 && 3+Q1_1>=H && 4+Q1_1>=4+Q1_1 ], cost: 6-H+Q1_1 Performed chaining from the start location: Start location: f2 211: f148 -> [29] : D'=free_118, E'=free_111, Q'=1+A, O'=free_119, R'=free_191*free_116+free_190, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=-1+A, U1'=free_112, V1'=free_111, [ R>=0 && 0>=1+free_111 && D1>=R*free_120+free_111*free_120 && R*free_120+free_120+free_111*free_120>=1+D1 && free_120>=free_115 && D1>=free_111*free_122+R*free_122 && free_122+free_111*free_122+R*free_122>=1+D1 && free_115>=free_122 && D1>=free_111*free_126 && free_126+free_111*free_126>=1+D1 && free_126>=free_117 && D1>=free_111*free_128 && free_128+free_111*free_128>=1+D1 && free_117>=free_128 && S>=free_111*free_121+free_121*R && free_121+free_111*free_121+free_121*R>=1+S && free_121>=free_116 && S>=free_111*free_124+free_124*R && free_124+free_111*free_124+free_124*R>=1+S && free_116>=free_124 && free_111+R>=free_111*free_127 && free_127+free_111*free_127>=1+free_111+R && free_127>=free_118 && free_111+R>=free_111*free_123 && free_111*free_123+free_123>=1+free_111+R && free_118>=free_123 && S>=free_111*free_125 && free_125+free_111*free_125>=1+S && free_125>=free_119 && S>=free_111*free_129 && free_111*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=Q && 1+B==A ], cost: 4-Q+A 212: f148 -> [29] : D'=free_118, E'=free_111, Q'=1+A, O'=free_119, R'=free_194*free_116+free_115*free_192+free_193, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=B, U1'=free_112, V1'=free_111, [ R>=0 && 0>=1+free_111 && D1>=R*free_120+free_111*free_120 && R*free_120+free_120+free_111*free_120>=1+D1 && free_120>=free_115 && D1>=free_111*free_122+R*free_122 && free_122+free_111*free_122+R*free_122>=1+D1 && free_115>=free_122 && D1>=free_111*free_126 && free_126+free_111*free_126>=1+D1 && free_126>=free_117 && D1>=free_111*free_128 && free_128+free_111*free_128>=1+D1 && free_117>=free_128 && S>=free_111*free_121+free_121*R && free_121+free_111*free_121+free_121*R>=1+S && free_121>=free_116 && S>=free_111*free_124+free_124*R && free_124+free_111*free_124+free_124*R>=1+S && free_116>=free_124 && free_111+R>=free_111*free_127 && free_127+free_111*free_127>=1+free_111+R && free_127>=free_118 && free_111+R>=free_111*free_123 && free_111*free_123+free_123>=1+free_111+R && free_118>=free_123 && S>=free_111*free_125 && free_125+free_111*free_125>=1+S && free_125>=free_119 && S>=free_111*free_129 && free_111*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=2+B && A>=Q ], cost: 4-Q+A 213: f148 -> [29] : D'=free_133, E'=free_111, Q'=1+A, O'=free_134, R'=free_190+free_191*free_131, S'=free_131, V'=free_132, D1'=free_130, Q1_1'=-1+A, U1'=free_112, V1'=free_111, [ R>=0 && 0>=1+free_111 && Q1_1>=1+B && D1>=R*free_135+free_111*free_135 && R*free_135+free_111*free_135+free_135>=1+D1 && free_135>=free_130 && D1>=free_111*free_137+free_137*R && free_111*free_137+free_137+free_137*R>=1+D1 && free_130>=free_137 && D1>=free_111*free_141 && free_141+free_111*free_141>=1+D1 && free_141>=free_132 && D1>=free_111*free_143 && free_111*free_143+free_143>=1+D1 && free_132>=free_143 && S>=R*free_136+free_111*free_136 && R*free_136+free_136+free_111*free_136>=1+S && free_136>=free_131 && S>=R*free_139+free_111*free_139 && R*free_139+free_139+free_111*free_139>=1+S && free_131>=free_139 && free_111+R>=free_111*free_142 && free_111*free_142+free_142>=1+free_111+R && free_142>=free_133 && free_111+R>=free_111*free_138 && free_138+free_111*free_138>=1+free_111+R && free_133>=free_138 && S>=free_111*free_140 && free_140+free_111*free_140>=1+S && free_140>=free_134 && S>=free_111*free_144 && free_111*free_144+free_144>=1+S && free_134>=free_144 && C1==Q1_1 && A>=Q && 1+C1==A ], cost: 4-Q+A 214: f148 -> [29] : D'=free_148, E'=free_111, Q'=1+A, O'=free_149, R'=free_194*free_146+free_145*free_192+free_193, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, U1'=free_112, V1'=free_111, [ R>=0 && 0>=1+free_111 && B>=1+Q1_1 && D1>=free_111*free_150+free_150*R && free_150+free_111*free_150+free_150*R>=1+D1 && free_150>=free_145 && D1>=free_111*free_152+R*free_152 && free_111*free_152+R*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=free_111*free_156 && free_111*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=free_111*free_158 && free_111*free_158+free_158>=1+D1 && free_147>=free_158 && S>=R*free_151+free_111*free_151 && free_151+R*free_151+free_111*free_151>=1+S && free_151>=free_146 && S>=free_154*R+free_111*free_154 && free_154+free_154*R+free_111*free_154>=1+S && free_146>=free_154 && free_111+R>=free_111*free_157 && free_157+free_111*free_157>=1+free_111+R && free_157>=free_148 && free_111+R>=free_111*free_153 && free_111*free_153+free_153>=1+free_111+R && free_148>=free_153 && S>=free_111*free_155 && free_111*free_155+free_155>=1+S && free_155>=free_149 && S>=free_111*free_159 && free_111*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && A>=2+C1 && A>=Q ], cost: 4-Q+A 215: f148 -> [29] : D'=free_148, E'=free_111, Q'=1+A, O'=free_149, R'=free_145*free_195+free_197*free_146+free_196, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, U1'=free_112, V1'=free_111, [ R>=0 && 0>=1+free_111 && B>=1+Q1_1 && D1>=free_111*free_150+free_150*R && free_150+free_111*free_150+free_150*R>=1+D1 && free_150>=free_145 && D1>=free_111*free_152+R*free_152 && free_111*free_152+R*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=free_111*free_156 && free_111*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=free_111*free_158 && free_111*free_158+free_158>=1+D1 && free_147>=free_158 && S>=R*free_151+free_111*free_151 && free_151+R*free_151+free_111*free_151>=1+S && free_151>=free_146 && S>=free_154*R+free_111*free_154 && free_154+free_154*R+free_111*free_154>=1+S && free_146>=free_154 && free_111+R>=free_111*free_157 && free_157+free_111*free_157>=1+free_111+R && free_157>=free_148 && free_111+R>=free_111*free_153 && free_111*free_153+free_153>=1+free_111+R && free_148>=free_153 && S>=free_111*free_155 && free_111*free_155+free_155>=1+S && free_155>=free_149 && S>=free_111*free_159 && free_111*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && C1>=A && A>=Q ], cost: 4-Q+A 216: f148 -> [29] : D'=free_118, E'=free_111, Q'=1+A, O'=free_119, R'=free_191*free_116+free_190, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=-1+A, U1'=free_112, V1'=free_111, [ R>=0 && free_111>=1 && D1>=R*free_120+free_111*free_120 && R*free_120+free_120+free_111*free_120>=1+D1 && free_120>=free_115 && D1>=free_111*free_122+R*free_122 && free_122+free_111*free_122+R*free_122>=1+D1 && free_115>=free_122 && D1>=free_111*free_126 && free_126+free_111*free_126>=1+D1 && free_126>=free_117 && D1>=free_111*free_128 && free_128+free_111*free_128>=1+D1 && free_117>=free_128 && S>=free_111*free_121+free_121*R && free_121+free_111*free_121+free_121*R>=1+S && free_121>=free_116 && S>=free_111*free_124+free_124*R && free_124+free_111*free_124+free_124*R>=1+S && free_116>=free_124 && free_111+R>=free_111*free_127 && free_127+free_111*free_127>=1+free_111+R && free_127>=free_118 && free_111+R>=free_111*free_123 && free_111*free_123+free_123>=1+free_111+R && free_118>=free_123 && S>=free_111*free_125 && free_125+free_111*free_125>=1+S && free_125>=free_119 && S>=free_111*free_129 && free_111*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=Q && 1+B==A ], cost: 4-Q+A 217: f148 -> [29] : D'=free_118, E'=free_111, Q'=1+A, O'=free_119, R'=free_194*free_116+free_115*free_192+free_193, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=B, U1'=free_112, V1'=free_111, [ R>=0 && free_111>=1 && D1>=R*free_120+free_111*free_120 && R*free_120+free_120+free_111*free_120>=1+D1 && free_120>=free_115 && D1>=free_111*free_122+R*free_122 && free_122+free_111*free_122+R*free_122>=1+D1 && free_115>=free_122 && D1>=free_111*free_126 && free_126+free_111*free_126>=1+D1 && free_126>=free_117 && D1>=free_111*free_128 && free_128+free_111*free_128>=1+D1 && free_117>=free_128 && S>=free_111*free_121+free_121*R && free_121+free_111*free_121+free_121*R>=1+S && free_121>=free_116 && S>=free_111*free_124+free_124*R && free_124+free_111*free_124+free_124*R>=1+S && free_116>=free_124 && free_111+R>=free_111*free_127 && free_127+free_111*free_127>=1+free_111+R && free_127>=free_118 && free_111+R>=free_111*free_123 && free_111*free_123+free_123>=1+free_111+R && free_118>=free_123 && S>=free_111*free_125 && free_125+free_111*free_125>=1+S && free_125>=free_119 && S>=free_111*free_129 && free_111*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=2+B && A>=Q ], cost: 4-Q+A 218: f148 -> [29] : D'=free_133, E'=free_111, Q'=1+A, O'=free_134, R'=free_190+free_191*free_131, S'=free_131, V'=free_132, D1'=free_130, Q1_1'=-1+A, U1'=free_112, V1'=free_111, [ R>=0 && free_111>=1 && Q1_1>=1+B && D1>=R*free_135+free_111*free_135 && R*free_135+free_111*free_135+free_135>=1+D1 && free_135>=free_130 && D1>=free_111*free_137+free_137*R && free_111*free_137+free_137+free_137*R>=1+D1 && free_130>=free_137 && D1>=free_111*free_141 && free_141+free_111*free_141>=1+D1 && free_141>=free_132 && D1>=free_111*free_143 && free_111*free_143+free_143>=1+D1 && free_132>=free_143 && S>=R*free_136+free_111*free_136 && R*free_136+free_136+free_111*free_136>=1+S && free_136>=free_131 && S>=R*free_139+free_111*free_139 && R*free_139+free_139+free_111*free_139>=1+S && free_131>=free_139 && free_111+R>=free_111*free_142 && free_111*free_142+free_142>=1+free_111+R && free_142>=free_133 && free_111+R>=free_111*free_138 && free_138+free_111*free_138>=1+free_111+R && free_133>=free_138 && S>=free_111*free_140 && free_140+free_111*free_140>=1+S && free_140>=free_134 && S>=free_111*free_144 && free_111*free_144+free_144>=1+S && free_134>=free_144 && C1==Q1_1 && A>=Q && 1+C1==A ], cost: 4-Q+A 219: f148 -> [29] : D'=free_148, E'=free_111, Q'=1+A, O'=free_149, R'=free_194*free_146+free_145*free_192+free_193, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, U1'=free_112, V1'=free_111, [ R>=0 && free_111>=1 && B>=1+Q1_1 && D1>=free_111*free_150+free_150*R && free_150+free_111*free_150+free_150*R>=1+D1 && free_150>=free_145 && D1>=free_111*free_152+R*free_152 && free_111*free_152+R*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=free_111*free_156 && free_111*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=free_111*free_158 && free_111*free_158+free_158>=1+D1 && free_147>=free_158 && S>=R*free_151+free_111*free_151 && free_151+R*free_151+free_111*free_151>=1+S && free_151>=free_146 && S>=free_154*R+free_111*free_154 && free_154+free_154*R+free_111*free_154>=1+S && free_146>=free_154 && free_111+R>=free_111*free_157 && free_157+free_111*free_157>=1+free_111+R && free_157>=free_148 && free_111+R>=free_111*free_153 && free_111*free_153+free_153>=1+free_111+R && free_148>=free_153 && S>=free_111*free_155 && free_111*free_155+free_155>=1+S && free_155>=free_149 && S>=free_111*free_159 && free_111*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && A>=2+C1 && A>=Q ], cost: 4-Q+A 220: f148 -> [29] : D'=free_148, E'=free_111, Q'=1+A, O'=free_149, R'=free_145*free_195+free_197*free_146+free_196, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, U1'=free_112, V1'=free_111, [ R>=0 && free_111>=1 && B>=1+Q1_1 && D1>=free_111*free_150+free_150*R && free_150+free_111*free_150+free_150*R>=1+D1 && free_150>=free_145 && D1>=free_111*free_152+R*free_152 && free_111*free_152+R*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=free_111*free_156 && free_111*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=free_111*free_158 && free_111*free_158+free_158>=1+D1 && free_147>=free_158 && S>=R*free_151+free_111*free_151 && free_151+R*free_151+free_111*free_151>=1+S && free_151>=free_146 && S>=free_154*R+free_111*free_154 && free_154+free_154*R+free_111*free_154>=1+S && free_146>=free_154 && free_111+R>=free_111*free_157 && free_157+free_111*free_157>=1+free_111+R && free_157>=free_148 && free_111+R>=free_111*free_153 && free_111*free_153+free_153>=1+free_111+R && free_148>=free_153 && S>=free_111*free_155 && free_111*free_155+free_155>=1+S && free_155>=free_149 && S>=free_111*free_159 && free_111*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && C1>=A && A>=Q ], cost: 4-Q+A 221: f148 -> [29] : D'=free_118, E'=-free_113, Q'=1+A, O'=free_119, R'=free_191*free_116+free_190, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=-1+A, W1'=free_114, X1'=free_113, [ 0>=1+R && 0>=1-free_113 && D1>=-free_113*free_120+R*free_120 && -free_113*free_120+R*free_120+free_120>=1+D1 && free_120>=free_115 && D1>=-free_122*free_113+R*free_122 && free_122-free_122*free_113+R*free_122>=1+D1 && free_115>=free_122 && D1>=-free_113*free_126 && -free_113*free_126+free_126>=1+D1 && free_126>=free_117 && D1>=-free_128*free_113 && free_128-free_128*free_113>=1+D1 && free_117>=free_128 && S>=-free_121*free_113+free_121*R && free_121-free_121*free_113+free_121*R>=1+S && free_121>=free_116 && S>=-free_124*free_113+free_124*R && free_124-free_124*free_113+free_124*R>=1+S && free_116>=free_124 && R-free_113>=-free_127*free_113 && free_127-free_127*free_113>=1+R-free_113 && free_127>=free_118 && R-free_113>=-free_113*free_123 && -free_113*free_123+free_123>=1+R-free_113 && free_118>=free_123 && S>=-free_125*free_113 && -free_125*free_113+free_125>=1+S && free_125>=free_119 && S>=-free_113*free_129 && -free_113*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=Q && 1+B==A ], cost: 4-Q+A 222: f148 -> [29] : D'=free_118, E'=-free_113, Q'=1+A, O'=free_119, R'=free_194*free_116+free_115*free_192+free_193, S'=free_116, V'=free_117, C1'=B, D1'=free_115, Q1_1'=B, W1'=free_114, X1'=free_113, [ 0>=1+R && 0>=1-free_113 && D1>=-free_113*free_120+R*free_120 && -free_113*free_120+R*free_120+free_120>=1+D1 && free_120>=free_115 && D1>=-free_122*free_113+R*free_122 && free_122-free_122*free_113+R*free_122>=1+D1 && free_115>=free_122 && D1>=-free_113*free_126 && -free_113*free_126+free_126>=1+D1 && free_126>=free_117 && D1>=-free_128*free_113 && free_128-free_128*free_113>=1+D1 && free_117>=free_128 && S>=-free_121*free_113+free_121*R && free_121-free_121*free_113+free_121*R>=1+S && free_121>=free_116 && S>=-free_124*free_113+free_124*R && free_124-free_124*free_113+free_124*R>=1+S && free_116>=free_124 && R-free_113>=-free_127*free_113 && free_127-free_127*free_113>=1+R-free_113 && free_127>=free_118 && R-free_113>=-free_113*free_123 && -free_113*free_123+free_123>=1+R-free_113 && free_118>=free_123 && S>=-free_125*free_113 && -free_125*free_113+free_125>=1+S && free_125>=free_119 && S>=-free_113*free_129 && -free_113*free_129+free_129>=1+S && free_119>=free_129 && B==Q1_1 && C1==Q1_1 && A>=2+B && A>=Q ], cost: 4-Q+A 223: f148 -> [29] : D'=free_133, E'=-free_113, Q'=1+A, O'=free_134, R'=free_190+free_191*free_131, S'=free_131, V'=free_132, D1'=free_130, Q1_1'=-1+A, W1'=free_114, X1'=free_113, [ 0>=1+R && 0>=1-free_113 && Q1_1>=1+B && D1>=R*free_135-free_135*free_113 && R*free_135-free_135*free_113+free_135>=1+D1 && free_135>=free_130 && D1>=free_137*R-free_137*free_113 && free_137+free_137*R-free_137*free_113>=1+D1 && free_130>=free_137 && D1>=-free_141*free_113 && free_141-free_141*free_113>=1+D1 && free_141>=free_132 && D1>=-free_113*free_143 && -free_113*free_143+free_143>=1+D1 && free_132>=free_143 && S>=-free_113*free_136+R*free_136 && -free_113*free_136+R*free_136+free_136>=1+S && free_136>=free_131 && S>=-free_113*free_139+R*free_139 && -free_113*free_139+R*free_139+free_139>=1+S && free_131>=free_139 && R-free_113>=-free_142*free_113 && -free_142*free_113+free_142>=1+R-free_113 && free_142>=free_133 && R-free_113>=-free_138*free_113 && free_138-free_138*free_113>=1+R-free_113 && free_133>=free_138 && S>=-free_140*free_113 && free_140-free_140*free_113>=1+S && free_140>=free_134 && S>=-free_144*free_113 && free_144-free_144*free_113>=1+S && free_134>=free_144 && C1==Q1_1 && A>=Q && 1+C1==A ], cost: 4-Q+A 224: f148 -> [29] : D'=free_148, E'=-free_113, Q'=1+A, O'=free_149, R'=free_194*free_146+free_145*free_192+free_193, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, W1'=free_114, X1'=free_113, [ 0>=1+R && 0>=1-free_113 && B>=1+Q1_1 && D1>=-free_150*free_113+free_150*R && free_150-free_150*free_113+free_150*R>=1+D1 && free_150>=free_145 && D1>=R*free_152-free_113*free_152 && R*free_152-free_113*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=-free_113*free_156 && -free_113*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=-free_113*free_158 && -free_113*free_158+free_158>=1+D1 && free_147>=free_158 && S>=-free_151*free_113+R*free_151 && free_151-free_151*free_113+R*free_151>=1+S && free_151>=free_146 && S>=-free_154*free_113+free_154*R && -free_154*free_113+free_154+free_154*R>=1+S && free_146>=free_154 && R-free_113>=-free_157*free_113 && free_157-free_157*free_113>=1+R-free_113 && free_157>=free_148 && R-free_113>=-free_113*free_153 && -free_113*free_153+free_153>=1+R-free_113 && free_148>=free_153 && S>=-free_155*free_113 && -free_155*free_113+free_155>=1+S && free_155>=free_149 && S>=-free_113*free_159 && -free_113*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && A>=2+C1 && A>=Q ], cost: 4-Q+A 225: f148 -> [29] : D'=free_148, E'=-free_113, Q'=1+A, O'=free_149, R'=free_145*free_195+free_197*free_146+free_196, S'=free_146, V'=free_147, D1'=free_145, Q1_1'=C1, W1'=free_114, X1'=free_113, [ 0>=1+R && 0>=1-free_113 && B>=1+Q1_1 && D1>=-free_150*free_113+free_150*R && free_150-free_150*free_113+free_150*R>=1+D1 && free_150>=free_145 && D1>=R*free_152-free_113*free_152 && R*free_152-free_113*free_152+free_152>=1+D1 && free_145>=free_152 && D1>=-free_113*free_156 && -free_113*free_156+free_156>=1+D1 && free_156>=free_147 && D1>=-free_113*free_158 && -free_113*free_158+free_158>=1+D1 && free_147>=free_158 && S>=-free_151*free_113+R*free_151 && free_151-free_151*free_113+R*free_151>=1+S && free_151>=free_146 && S>=-free_154*free_113+free_154*R && -free_154*free_113+free_154+free_154*R>=1+S && free_146>=free_154 && R-free_113>=-free_157*free_113 && free_157-free_157*free_113>=1+R-free_113 && free_157>=free_148 && R-free_113>=-free_113*free_153 && -free_113*free_153+free_153>=1+R-free_113 && free_148>=free_153 && S>=-free_155*free_113 && -free_155*free_113+free_155>=1+S && free_155>=free_149 && S>=-free_113*free_159 && -free_113*free_159+free_159>=1+S && free_149>=free_159 && C1==Q1_1 && C1>=A && A>=Q ], cost: 4-Q+A 80: f80 -> f93 : C'=1+C, D'=3*free_226, E'=4*free_226, H'=1+A, J'=free_226, O'=3*free_226, P'=free_225, Z1'=4*free_226-free_227, A2'=free_227, [ A>=H && 1+A>=1+A ], cost: 2-H+A 196: f93 -> f124 : E'=free_207+free_211+free_212, R'=free_210, S'=free_206, V'=free_208, C1'=B, D1'=free_209, E1'=free_211, F1'=free_212, G1'=free_207, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && 0>=1+free_55*free_62+free_65*free_62 && free_223>=free_212*free_219+free_211*free_219+free_207*free_219 && free_212*free_219+free_211*free_219+free_207*free_219+free_219>=1+free_223 && free_219>=free_209 && free_223>=free_212*free_213+free_207*free_213+free_211*free_213 && free_212*free_213+free_207*free_213+free_211*free_213+free_213>=1+free_223 && free_209>=free_213 && free_208^2+O*D>=O*free_208+free_208*D+P+free_222*free_216 && O*free_208+free_208*D+P+free_216+free_222*free_216>=1+free_208^2+O*D && free_218+free_216>=free_214*free_212+free_207*free_214+free_214*free_211 && free_214*free_212+free_214+free_207*free_214+free_214*free_211>=1+free_218+free_216 && free_214>=free_210 && free_208^2+O*D>=O*free_208+free_224*free_222+free_208*D+P && O*free_208+free_224*free_222+free_208*D+free_224+P>=1+free_208^2+O*D && free_224+free_218>=free_207*free_220+free_220*free_211+free_220*free_212 && free_220+free_207*free_220+free_220*free_211+free_220*free_212>=1+free_224+free_218 && free_210>=free_220 && free_208+free_221>=free_217*free_211+free_207*free_217+O+free_217*free_212+D && free_217*free_211+free_217+free_207*free_217+O+free_217*free_212+D>=1+free_208+free_221 && free_217>=free_206 && free_208+free_221>=free_211*free_215+free_207*free_215+free_215*free_212+O+D && free_211*free_215+free_207*free_215+free_215*free_212+O+free_215+D>=1+free_208+free_221 && free_206>=free_215 && B==-1+C1 ], cost: 3 197: f93 -> f124 : E'=free_59+free_53+free_63, R'=free_58, S'=free_52, V'=free_54, C1'=-1+C1, D1'=free_56, E1'=free_59, F1'=free_63, G1'=free_53, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && 0>=1+free_55*free_62+free_65*free_62 && free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && -1+C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 ], cost: 4 198: f93 -> f124 : E'=free_207+free_211+free_212, R'=free_210, S'=free_206, V'=free_208, C1'=B, D1'=free_209, E1'=free_211, F1'=free_212, G1'=free_207, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_55*free_62+free_65*free_62>=1 && free_223>=free_212*free_219+free_211*free_219+free_207*free_219 && free_212*free_219+free_211*free_219+free_207*free_219+free_219>=1+free_223 && free_219>=free_209 && free_223>=free_212*free_213+free_207*free_213+free_211*free_213 && free_212*free_213+free_207*free_213+free_211*free_213+free_213>=1+free_223 && free_209>=free_213 && free_208^2+O*D>=O*free_208+free_208*D+P+free_222*free_216 && O*free_208+free_208*D+P+free_216+free_222*free_216>=1+free_208^2+O*D && free_218+free_216>=free_214*free_212+free_207*free_214+free_214*free_211 && free_214*free_212+free_214+free_207*free_214+free_214*free_211>=1+free_218+free_216 && free_214>=free_210 && free_208^2+O*D>=O*free_208+free_224*free_222+free_208*D+P && O*free_208+free_224*free_222+free_208*D+free_224+P>=1+free_208^2+O*D && free_224+free_218>=free_207*free_220+free_220*free_211+free_220*free_212 && free_220+free_207*free_220+free_220*free_211+free_220*free_212>=1+free_224+free_218 && free_210>=free_220 && free_208+free_221>=free_217*free_211+free_207*free_217+O+free_217*free_212+D && free_217*free_211+free_217+free_207*free_217+O+free_217*free_212+D>=1+free_208+free_221 && free_217>=free_206 && free_208+free_221>=free_211*free_215+free_207*free_215+free_215*free_212+O+D && free_211*free_215+free_207*free_215+free_215*free_212+O+free_215+D>=1+free_208+free_221 && free_206>=free_215 && B==-1+C1 ], cost: 3 199: f93 -> f124 : E'=free_59+free_53+free_63, R'=free_58, S'=free_52, V'=free_54, C1'=-1+C1, D1'=free_56, E1'=free_59, F1'=free_63, G1'=free_53, H1'=free_62, Q1'=free_65, J1'=free_55, K1'=free_55*free_62+free_65*free_62, L1'=free_60, M1'=free_64, N1'=free_57, O1'=free_61, P1'=free_64*free_60+free_61*free_60+free_60*free_57, [ free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_55*free_62+free_65*free_62>=1 && free_77>=free_56 && free_56>=free_72 && free_76>=free_52 && free_52>=free_70 && O*D+free_54^2>=free_67*free_75+D*free_54+O*free_54+P && free_67*free_75+free_67+D*free_54+O*free_54+P>=1+O*D+free_54^2 && free_66>=free_58 && O*D+free_54^2>=free_75*free_69+D*free_54+O*free_54+P && free_75*free_69+D*free_54+O*free_54+free_69+P>=1+O*D+free_54^2 && free_58>=free_68 && -1+C1>=1+B && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1-free_67+free_59*free_66+free_53*free_66+free_66+free_66*free_63 && -free_67+free_59*free_66+free_53*free_66+free_66*free_63<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_68*free_59+free_68*free_63+free_68*free_53-free_69<=-1+free_68*free_59+free_68+free_68*free_63+free_68*free_53-free_69 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_59*free_76+O+free_53*free_76+free_63*free_76+free_76+D-free_54 && free_59*free_76+O+free_53*free_76+free_63*free_76+D-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54<=-1+free_70+free_70*free_53+O+free_70*free_59+D+free_70*free_63-free_54 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_77*free_59+free_77+free_77*free_63+free_77*free_53 && free_77*free_59+free_77*free_63+free_77*free_53<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 && free_72*free_53+free_59*free_72+free_72*free_63<=-1+free_72*free_53+free_59*free_72+free_72*free_63+free_72 ], cost: 4 200: f93 -> f124 : [ B>=1+C1 ], cost: 1 117: f124 -> f132 : H'=3+C1, [ A>=2+C1 && H==2+C1 && 3+C1>=1+A ], cost: 4-H+C1 118: f124 -> f132 : H'=1+H, [ 1+C1>=H && A>=H && 1+H>=1+A ], cost: 2 119: f124 -> f132 : H'=1+A, [ H>=3+C1 && A>=H && 1+A>=1+A ], cost: 2-H+A 120: f124 -> f132 : [ H>=1+A ], cost: 1 42: f132 -> f148 : Q1_1'=C1, [ A>=1+Q1_1 && C1==Q1_1 ], cost: 1 203: f132 -> f148 : D'=0, R'=free_78, S'=free_79, D1'=0, Q1_1'=-1+A, R1'=free_83, S1'=free_84, T1'=free_82, [ C1>=1+Q1_1 && A>=1+Q1_1 && 1+Q1_1==A && free_84+free_82+free_83==0 ], cost: 3 205: f132 -> f148 : D'=free_87+free_88+free_85, R'=free_94, S'=free_95, D1'=free_93, R1'=free_87, S1'=free_88, T1'=free_85, [ C1>=1+Q1_1 && A>=1+Q1_1 && A>=2+Q1_1 && free_86>=(free_87+free_88+free_85)*free_99 && (free_87+free_88+free_85)*free_99+free_99>=1+free_86 && free_99>=free_93 && free_86>=free_96*(free_87+free_88+free_85) && free_96+free_96*(free_87+free_88+free_85)>=1+free_86 && free_93>=free_96 && free_79>=(free_87+free_88+free_85)*free_97 && free_97+(free_87+free_88+free_85)*free_97>=1+free_79 && free_97>=free_95 && free_79>=(free_87+free_88+free_85)*free_98 && (free_87+free_88+free_85)*free_98+free_98>=1+free_79 && free_95>=free_98 && 0>=1+free_87+free_88+free_85 && free_78>=(free_87+free_88+free_85)*free_100 && free_100+(free_87+free_88+free_85)*free_100>=1+free_78 && free_100>=free_94 && free_78>=(free_87+free_88+free_85)*free_101 && (free_87+free_88+free_85)*free_101+free_101>=1+free_78 && free_94>=free_101 ], cost: 3 206: f132 -> f148 : D'=free_87+free_88+free_85, R'=free_103, S'=free_104, D1'=free_102, R1'=free_87, S1'=free_88, T1'=free_85, [ C1>=1+Q1_1 && A>=1+Q1_1 && A>=2+Q1_1 && free_86>=(free_87+free_88+free_85)*free_108 && (free_87+free_88+free_85)*free_108+free_108>=1+free_86 && free_108>=free_102 && free_86>=(free_87+free_88+free_85)*free_105 && (free_87+free_88+free_85)*free_105+free_105>=1+free_86 && free_102>=free_105 && free_79>=(free_87+free_88+free_85)*free_106 && free_106+(free_87+free_88+free_85)*free_106>=1+free_79 && free_106>=free_104 && free_79>=(free_87+free_88+free_85)*free_107 && free_107+(free_87+free_88+free_85)*free_107>=1+free_79 && free_104>=free_107 && free_87+free_88+free_85>=1 && free_78>=free_109*(free_87+free_88+free_85) && free_109+free_109*(free_87+free_88+free_85)>=1+free_78 && free_109>=free_103 && free_78>=(free_87+free_88+free_85)*free_110 && (free_87+free_88+free_85)*free_110+free_110>=1+free_78 && free_103>=free_110 ], cost: 3 208: f132 -> f148 : D'=0, R'=free_80, S'=free_81, D1'=free_86, R1'=free_87, S1'=free_88, T1'=free_85, [ Q1_1>=1+C1 && A>=1+Q1_1 && A>=2+Q1_1 && free_87+free_88+free_85==0 ], cost: 3 226: [29] -> f132 : H'=1+A, R'=free_198*D+O*free_199, Q1_1'=A, Y1'=A, [ Q>=1+A && 2+Q1_1>=A && A>=H && 1+Q1_1==A && 1+A>=1+A ], cost: 3-H+A 227: [29] -> f132 : H'=1+A, R'=free_201*D+free_200*V+O*free_202, Q1_1'=1+Q1_1, Y1'=A, [ Q>=1+A && 2+Q1_1>=A && A>=2+Q1_1 && A>=H && 1+A>=1+A ], cost: 3-H+A 228: [29] -> f132 : H'=1+A, R'=V*free_203+free_204*D+O*free_205, Q1_1'=1+Q1_1, Y1'=A, [ Q>=1+A && 2+Q1_1>=A && Q1_1>=A && A>=H && 1+A>=1+A ], cost: 3-H+A 229: [29] -> f132 : H'=4+Q1_1, R'=free_201*D+free_200*V+O*free_202, Q1_1'=1+Q1_1, Y1'=3+Q1_1, [ Q>=1+A && A>=3+Q1_1 && A>=2+Q1_1 && 3+Q1_1>=H && 4+Q1_1>=4+Q1_1 ], cost: 6-H+Q1_1 The final runtime is determined by this resulting transition: Final Guard: G>=H && G>=Q && 1+H>=1+G Final Cost: 6-Q Obtained the following complexity w.r.t. the length of the input n: Complexity class: n^1 Complexity value: 1 WORST_CASE(Omega(n^1),?)