Trying to load file: main.koat Initial Control flow graph problem: Start location: f0 0: f0 -> f3 : A'=0, B'=0, [], cost: 1 1: f3 -> f3 : C'=-1+C, D'=free, [ C>=1 && free>=1 ], cost: 1 2: f3 -> f3 : C'=-2+C, D'=free_1, [ C>=1 && 0>=free_1 ], cost: 1 3: f3 -> f6 : E'=free_2, [ 0>=C ], cost: 1 4: f6 -> f6 : A'=1, E'=free_3, [ E>=1 ], cost: 1 5: f6 -> f6 : A'=0, E'=free_4, [ 0>=E ], cost: 1 Eliminating 2 self-loops for location f3 Self-Loop 1 has the metering function: C, resulting in the new transition 6. Self-Loop 2 has the metering function: meter, resulting in the new transition 7. Removing the self-loops: 1 2. Eliminating 2 self-loops for location f6 Removing the self-loops: 4 5. Adding an epsilon transition (to model nonexecution of the loops): 10. Removed all Self-loops using metering functions (where possible): Start location: f0 0: f0 -> f3 : A'=0, B'=0, [], cost: 1 6: f3 -> [3] : C'=0, D'=free, [ C>=1 && free>=1 ], cost: C 7: f3 -> [3] : C'=C-2*meter, D'=free_1, [ C>=1 && 0>=free_1 && 2*meter==C ], cost: meter 8: f6 -> [4] : A'=1, E'=free_3, [ E>=1 ], cost: 1 9: f6 -> [4] : A'=0, E'=free_4, [ 0>=E ], cost: 1 10: f6 -> [4] : [], cost: 0 3: [3] -> f6 : E'=free_2, [ 0>=C ], cost: 1 Applied chaining over branches and pruning: Start location: f0 11: f0 -> [3] : A'=0, B'=0, C'=0, D'=free, [ C>=1 && free>=1 ], cost: 1+C 12: f0 -> [3] : A'=0, B'=0, C'=C-2*meter, D'=free_1, [ C>=1 && 0>=free_1 && 2*meter==C ], cost: 1+meter Final control flow graph problem, now checking costs for infinitely many models: Start location: f0 11: f0 -> [3] : A'=0, B'=0, C'=0, D'=free, [ C>=1 && free>=1 ], cost: 1+C 12: f0 -> [3] : A'=0, B'=0, C'=C-2*meter, D'=free_1, [ C>=1 && 0>=free_1 && 2*meter==C ], cost: 1+meter Computing complexity for remaining 2 transitions. Found configuration with infinitely models for cost: 1+C and guard: C>=1 && free>=1: C: Pos, free: Pos Found new complexity n^1, because: Found infinity configuration. The final runtime is determined by this resulting transition: Final Guard: C>=1 && free>=1 Final Cost: 1+C Obtained the following complexity w.r.t. the length of the input n: Complexity class: n^1 Complexity value: 1 WORST_CASE(Omega(n^1),?)