Trying to load file: main.koat Initial Control flow graph problem: Start location: f0 0: f0 -> f1 : [], cost: 1 1: f1 -> f7 : A'=1, B'=C, D'=E, F'=free_1, G'=free, H'=0, Q'=1, J'=free_1, K'=free, L'=7, [ 7>=free && 7>=free_1 && 3>=free && free>=1 && free_1>=1 ], cost: 1 2: f1 -> f7 : A'=1, B'=C, D'=E, F'=free_3, G'=free_2, H'=0, Q'=1, J'=free_3, K'=free_2, L'=7, [ 7>=free_2 && 7>=free_3 && free_2>=5 && free_3>=1 ], cost: 1 3: f1 -> f7 : A'=1, B'=1+C, C'=1+C, D'=1+E, E'=1+E, F'=free_4, G'=4, H'=1, Q'=1, J'=free_4, K'=4, L'=7, [ 7>=free_4 && free_4>=1 ], cost: 1 4: f1 -> f2 : A'=0, B'=C, D'=E, F'=3, G'=free_5, H'=0, Q'=0, J'=3, K'=free_5, L'=2, [ 7>=free_5 && 3>=free_5 && free_5>=1 ], cost: 1 5: f1 -> f2 : A'=0, B'=C, D'=E, F'=3, G'=free_6, H'=0, Q'=0, J'=3, K'=free_6, L'=2, [ 7>=free_6 && free_6>=5 ], cost: 1 6: f1 -> f2 : A'=0, B'=1+C, C'=1+C, D'=1+E, E'=1+E, F'=3, G'=4, H'=1, Q'=0, J'=3, K'=4, L'=2, [], cost: 1 7: f2 -> f7 : A'=1, B'=C, D'=E, F'=free_8, G'=free_7, Q'=1, J'=free_8, K'=free_7, L'=7, [ 7>=free_7 && 7>=free_8 && 3>=free_7 && free_7>=1 && free_8>=1 ], cost: 1 8: f2 -> f7 : A'=1, B'=C, D'=E, F'=free_10, G'=free_9, Q'=1, J'=free_10, K'=free_9, L'=7, [ 7>=free_9 && 7>=free_10 && free_9>=5 && free_10>=1 ], cost: 1 9: f2 -> f7 : A'=1, B'=1+C, C'=1+C, D'=1+E, E'=1+E, F'=free_11, G'=4, H'=1, Q'=1, J'=free_11, K'=4, L'=7, [ 7>=free_11 && free_11>=1 ], cost: 1 10: f2 -> f3 : A'=0, B'=C, D'=E, F'=free_13, G'=free_12, Q'=0, J'=free_13, K'=free_12, L'=3, [ 7>=free_12 && 7>=free_13 && 3>=free_12 && free_12>=1 && free_13>=1 ], cost: 1 11: f2 -> f3 : A'=0, B'=C, D'=E, F'=free_15, G'=free_14, Q'=0, J'=free_15, K'=free_14, L'=3, [ 7>=free_14 && 7>=free_15 && free_14>=5 && free_15>=1 ], cost: 1 12: f2 -> f3 : A'=0, B'=1+C, C'=1+C, D'=1+E, E'=1+E, F'=free_16, G'=4, H'=1, Q'=0, J'=free_16, K'=4, L'=3, [ 7>=free_16 && free_16>=1 ], cost: 1 13: f3 -> f6 : A'=1, B'=C, D'=E, F'=free_18, G'=free_17, Q'=1, J'=free_18, K'=free_17, L'=6, [ 7>=free_17 && 7>=free_18 && 3>=free_17 && free_17>=1 && free_18>=1 ], cost: 1 14: f3 -> f6 : A'=1, B'=C, D'=E, F'=free_20, G'=free_19, Q'=1, J'=free_20, K'=free_19, L'=6, [ 7>=free_19 && 7>=free_20 && free_19>=5 && free_20>=1 ], cost: 1 15: f3 -> f6 : A'=1, B'=1+C, C'=1+C, D'=1+E, E'=1+E, F'=free_21, G'=4, H'=1, Q'=1, J'=free_21, K'=4, L'=6, [ 7>=free_21 && free_21>=1 ], cost: 1 16: f6 -> f4 : A'=free_23, B'=C, D'=E, F'=free_22, G'=2, H'=0, Q'=free_23, J'=free_22, K'=2, L'=4, [ 7>=free_22 && 1>=free_23 && free_23>=0 && free_22>=1 ], cost: 1 17: f6 -> f4 : A'=free_25, B'=C, D'=E, F'=free_24, G'=7, H'=1, Q'=free_25, J'=free_24, K'=7, L'=4, [ 7>=free_24 && 1>=free_25 && free_25>=0 && free_24>=1 && H==1 ], cost: 1 21: f4 -> f7 : A'=0, B'=C, D'=E, F'=free_34, G'=free_33, Q'=0, J'=free_34, K'=free_33, L'=7, [ E>=M && C>=N && 7>=free_33 && 7>=free_34 && 3>=free_33 && free_33>=1 && free_34>=1 ], cost: 1 22: f4 -> f7 : A'=0, B'=C, D'=E, F'=free_36, G'=free_35, Q'=0, J'=free_36, K'=free_35, L'=7, [ E>=M && C>=N && 7>=free_35 && 7>=free_36 && free_35>=5 && free_36>=1 ], cost: 1 23: f4 -> f7 : A'=0, B'=1+C, C'=1+C, D'=1+E, E'=1+E, F'=free_37, G'=4, H'=1, Q'=0, J'=free_37, K'=4, L'=7, [ 1+E>=M && 1+C>=N && 7>=free_37 && free_37>=1 ], cost: 1 24: f4 -> f7 : A'=1, B'=C, D'=E, F'=free_39, G'=free_38, Q'=1, J'=free_39, K'=free_38, L'=7, [ 7>=free_38 && 7>=free_39 && 3>=free_38 && free_38>=1 && free_39>=1 ], cost: 1 25: f4 -> f7 : A'=1, B'=C, D'=E, F'=free_41, G'=free_40, Q'=1, J'=free_41, K'=free_40, L'=7, [ 7>=free_40 && 7>=free_41 && free_40>=5 && free_41>=1 ], cost: 1 26: f4 -> f7 : A'=1, B'=1+C, C'=1+C, D'=1+E, E'=1+E, F'=free_42, G'=4, H'=1, Q'=1, J'=free_42, K'=4, L'=7, [ 7>=free_42 && free_42>=1 ], cost: 1 18: f4 -> f2 : A'=0, B'=C, D'=E, F'=free_27, G'=free_26, H'=0, Q'=0, J'=free_27, K'=free_26, L'=2, [ M>=1+free_28 && N>=1+free_29 && M>=1 && N>=1 && 7>=free_26 && 7>=free_27 && 3>=free_26 && free_26>=1 && free_27>=1 && H==1 ], cost: 1 19: f4 -> f2 : A'=0, B'=C, D'=E, F'=free_31, G'=free_30, H'=0, Q'=0, J'=free_31, K'=free_30, L'=2, [ M>=1 && M>=1+E && N>=1 && N>=1+C && 7>=free_30 && 7>=free_31 && free_30>=5 && free_31>=1 && H==1 ], cost: 1 20: f4 -> f2 : A'=0, B'=1+C, C'=1+C, D'=1+E, E'=1+E, F'=free_32, G'=4, H'=0, Q'=0, J'=free_32, K'=4, L'=2, [ M>=2+E && N>=2+C && M>=1 && N>=1 && 7>=free_32 && free_32>=1 ], cost: 1 Simplified the transitions: Start location: f0 0: f0 -> f1 : [], cost: 1 4: f1 -> f2 : A'=0, B'=C, D'=E, F'=3, G'=free_5, H'=0, Q'=0, J'=3, K'=free_5, L'=2, [ 3>=free_5 && free_5>=1 ], cost: 1 5: f1 -> f2 : A'=0, B'=C, D'=E, F'=3, G'=free_6, H'=0, Q'=0, J'=3, K'=free_6, L'=2, [ 7>=free_6 && free_6>=5 ], cost: 1 6: f1 -> f2 : A'=0, B'=1+C, C'=1+C, D'=1+E, E'=1+E, F'=3, G'=4, H'=1, Q'=0, J'=3, K'=4, L'=2, [], cost: 1 10: f2 -> f3 : A'=0, B'=C, D'=E, F'=free_13, G'=free_12, Q'=0, J'=free_13, K'=free_12, L'=3, [ 7>=free_13 && 3>=free_12 && free_12>=1 && free_13>=1 ], cost: 1 11: f2 -> f3 : A'=0, B'=C, D'=E, F'=free_15, G'=free_14, Q'=0, J'=free_15, K'=free_14, L'=3, [ 7>=free_14 && 7>=free_15 && free_14>=5 && free_15>=1 ], cost: 1 12: f2 -> f3 : A'=0, B'=1+C, C'=1+C, D'=1+E, E'=1+E, F'=free_16, G'=4, H'=1, Q'=0, J'=free_16, K'=4, L'=3, [ 7>=free_16 && free_16>=1 ], cost: 1 13: f3 -> f6 : A'=1, B'=C, D'=E, F'=free_18, G'=free_17, Q'=1, J'=free_18, K'=free_17, L'=6, [ 7>=free_18 && 3>=free_17 && free_17>=1 && free_18>=1 ], cost: 1 14: f3 -> f6 : A'=1, B'=C, D'=E, F'=free_20, G'=free_19, Q'=1, J'=free_20, K'=free_19, L'=6, [ 7>=free_19 && 7>=free_20 && free_19>=5 && free_20>=1 ], cost: 1 15: f3 -> f6 : A'=1, B'=1+C, C'=1+C, D'=1+E, E'=1+E, F'=free_21, G'=4, H'=1, Q'=1, J'=free_21, K'=4, L'=6, [ 7>=free_21 && free_21>=1 ], cost: 1 16: f6 -> f4 : A'=free_23, B'=C, D'=E, F'=free_22, G'=2, H'=0, Q'=free_23, J'=free_22, K'=2, L'=4, [ 7>=free_22 && 1>=free_23 && free_23>=0 && free_22>=1 ], cost: 1 17: f6 -> f4 : A'=free_25, B'=C, D'=E, F'=free_24, G'=7, H'=1, Q'=free_25, J'=free_24, K'=7, L'=4, [ 7>=free_24 && 1>=free_25 && free_25>=0 && free_24>=1 && H==1 ], cost: 1 18: f4 -> f2 : A'=0, B'=C, D'=E, F'=free_27, G'=free_26, H'=0, Q'=0, J'=free_27, K'=free_26, L'=2, [ M>=1 && N>=1 && 7>=free_27 && 3>=free_26 && free_26>=1 && free_27>=1 && H==1 ], cost: 1 19: f4 -> f2 : A'=0, B'=C, D'=E, F'=free_31, G'=free_30, H'=0, Q'=0, J'=free_31, K'=free_30, L'=2, [ M>=1 && M>=1+E && N>=1 && N>=1+C && 7>=free_30 && 7>=free_31 && free_30>=5 && free_31>=1 && H==1 ], cost: 1 20: f4 -> f2 : A'=0, B'=1+C, C'=1+C, D'=1+E, E'=1+E, F'=free_32, G'=4, H'=0, Q'=0, J'=free_32, K'=4, L'=2, [ M>=2+E && N>=2+C && M>=1 && N>=1 && 7>=free_32 && free_32>=1 ], cost: 1 Applied chaining over branches and pruning: Start location: f0 27: f0 -> f2 : A'=0, B'=C, D'=E, F'=3, G'=free_5, H'=0, Q'=0, J'=3, K'=free_5, L'=2, [ 3>=free_5 && free_5>=1 ], cost: 2 28: f0 -> f2 : A'=0, B'=C, D'=E, F'=3, G'=free_6, H'=0, Q'=0, J'=3, K'=free_6, L'=2, [ 7>=free_6 && free_6>=5 ], cost: 2 29: f0 -> f2 : A'=0, B'=1+C, C'=1+C, D'=1+E, E'=1+E, F'=3, G'=4, H'=1, Q'=0, J'=3, K'=4, L'=2, [], cost: 2 30: f2 -> f6 : A'=1, B'=C, D'=E, F'=free_18, G'=free_17, Q'=1, J'=free_18, K'=free_17, L'=6, [ 7>=free_13 && 3>=free_12 && free_12>=1 && free_13>=1 && 7>=free_18 && 3>=free_17 && free_17>=1 && free_18>=1 ], cost: 2 31: f2 -> f6 : A'=1, B'=C, D'=E, F'=free_20, G'=free_19, Q'=1, J'=free_20, K'=free_19, L'=6, [ 7>=free_13 && 3>=free_12 && free_12>=1 && free_13>=1 && 7>=free_19 && 7>=free_20 && free_19>=5 && free_20>=1 ], cost: 2 33: f2 -> f6 : A'=1, B'=C, D'=E, F'=free_18, G'=free_17, Q'=1, J'=free_18, K'=free_17, L'=6, [ 7>=free_14 && 7>=free_15 && free_14>=5 && free_15>=1 && 7>=free_18 && 3>=free_17 && free_17>=1 && free_18>=1 ], cost: 2 34: f2 -> f6 : A'=1, B'=C, D'=E, F'=free_20, G'=free_19, Q'=1, J'=free_20, K'=free_19, L'=6, [ 7>=free_14 && 7>=free_15 && free_14>=5 && free_15>=1 && 7>=free_19 && 7>=free_20 && free_19>=5 && free_20>=1 ], cost: 2 36: f2 -> f6 : A'=1, B'=1+C, C'=1+C, D'=1+E, E'=1+E, F'=free_18, G'=free_17, H'=1, Q'=1, J'=free_18, K'=free_17, L'=6, [ 7>=free_16 && free_16>=1 && 7>=free_18 && 3>=free_17 && free_17>=1 && free_18>=1 ], cost: 2 39: f6 -> f2 : A'=0, B'=1+C, C'=1+C, D'=1+E, E'=1+E, F'=free_32, G'=4, H'=0, Q'=0, J'=free_32, K'=4, L'=2, [ 7>=free_22 && 1>=free_23 && free_23>=0 && free_22>=1 && M>=2+E && N>=2+C && M>=1 && N>=1 && 7>=free_32 && free_32>=1 ], cost: 2 40: f6 -> f2 : A'=0, B'=C, D'=E, F'=free_27, G'=free_26, H'=0, Q'=0, J'=free_27, K'=free_26, L'=2, [ 7>=free_24 && 1>=free_25 && free_25>=0 && free_24>=1 && H==1 && M>=1 && N>=1 && 7>=free_27 && 3>=free_26 && free_26>=1 && free_27>=1 && 1==1 ], cost: 2 41: f6 -> f2 : A'=0, B'=C, D'=E, F'=free_31, G'=free_30, H'=0, Q'=0, J'=free_31, K'=free_30, L'=2, [ 7>=free_24 && 1>=free_25 && free_25>=0 && free_24>=1 && H==1 && M>=1 && M>=1+E && N>=1 && N>=1+C && 7>=free_30 && 7>=free_31 && free_30>=5 && free_31>=1 && 1==1 ], cost: 2 42: f6 -> f2 : A'=0, B'=1+C, C'=1+C, D'=1+E, E'=1+E, F'=free_32, G'=4, H'=0, Q'=0, J'=free_32, K'=4, L'=2, [ 7>=free_24 && 1>=free_25 && free_25>=0 && free_24>=1 && H==1 && M>=2+E && N>=2+C && M>=1 && N>=1 && 7>=free_32 && free_32>=1 ], cost: 2 Applied chaining over branches and pruning: Start location: f0 27: f0 -> f2 : A'=0, B'=C, D'=E, F'=3, G'=free_5, H'=0, Q'=0, J'=3, K'=free_5, L'=2, [ 3>=free_5 && free_5>=1 ], cost: 2 28: f0 -> f2 : A'=0, B'=C, D'=E, F'=3, G'=free_6, H'=0, Q'=0, J'=3, K'=free_6, L'=2, [ 7>=free_6 && free_6>=5 ], cost: 2 29: f0 -> f2 : A'=0, B'=1+C, C'=1+C, D'=1+E, E'=1+E, F'=3, G'=4, H'=1, Q'=0, J'=3, K'=4, L'=2, [], cost: 2 43: f2 -> f2 : A'=0, B'=1+C, C'=1+C, D'=1+E, E'=1+E, F'=free_32, G'=4, H'=0, Q'=0, J'=free_32, K'=4, L'=2, [ 7>=free_13 && 3>=free_12 && free_12>=1 && free_13>=1 && 7>=free_18 && 3>=free_17 && free_17>=1 && free_18>=1 && 7>=free_22 && 1>=free_23 && free_23>=0 && free_22>=1 && M>=2+E && N>=2+C && M>=1 && N>=1 && 7>=free_32 && free_32>=1 ], cost: 4 44: f2 -> f2 : A'=0, B'=C, D'=E, F'=free_27, G'=free_26, H'=0, Q'=0, J'=free_27, K'=free_26, L'=2, [ 7>=free_13 && 3>=free_12 && free_12>=1 && free_13>=1 && 7>=free_18 && 3>=free_17 && free_17>=1 && free_18>=1 && 7>=free_24 && 1>=free_25 && free_25>=0 && free_24>=1 && H==1 && M>=1 && N>=1 && 7>=free_27 && 3>=free_26 && free_26>=1 && free_27>=1 && 1==1 ], cost: 4 46: f2 -> f2 : A'=0, B'=1+C, C'=1+C, D'=1+E, E'=1+E, F'=free_32, G'=4, H'=0, Q'=0, J'=free_32, K'=4, L'=2, [ 7>=free_13 && 3>=free_12 && free_12>=1 && free_13>=1 && 7>=free_18 && 3>=free_17 && free_17>=1 && free_18>=1 && 7>=free_24 && 1>=free_25 && free_25>=0 && free_24>=1 && H==1 && M>=2+E && N>=2+C && M>=1 && N>=1 && 7>=free_32 && free_32>=1 ], cost: 4 50: f2 -> f2 : A'=0, B'=1+C, C'=1+C, D'=1+E, E'=1+E, F'=free_32, G'=4, H'=0, Q'=0, J'=free_32, K'=4, L'=2, [ 7>=free_13 && 3>=free_12 && free_12>=1 && free_13>=1 && 7>=free_19 && 7>=free_20 && free_19>=5 && free_20>=1 && 7>=free_24 && 1>=free_25 && free_25>=0 && free_24>=1 && H==1 && M>=2+E && N>=2+C && M>=1 && N>=1 && 7>=free_32 && free_32>=1 ], cost: 4 53: f2 -> f2 : A'=0, B'=C, D'=E, F'=free_31, G'=free_30, H'=0, Q'=0, J'=free_31, K'=free_30, L'=2, [ 7>=free_14 && 7>=free_15 && free_14>=5 && free_15>=1 && 7>=free_18 && 3>=free_17 && free_17>=1 && free_18>=1 && 7>=free_24 && 1>=free_25 && free_25>=0 && free_24>=1 && H==1 && M>=1 && M>=1+E && N>=1 && N>=1+C && 7>=free_30 && 7>=free_31 && free_30>=5 && free_31>=1 && 1==1 ], cost: 4 Eliminating 5 self-loops for location f2 Self-Loop 44 has the metering function: H, resulting in the new transition 64. Self-Loop 46 has the metering function: -1+H, resulting in the new transition 65. Self-Loop 50 has the metering function: -1+H, resulting in the new transition 66. Self-Loop 53 has the metering function: H, resulting in the new transition 67. Found this metering function when nesting loops: -1+H, Found this metering function when nesting loops: H, Found this metering function when nesting loops: H, Found this metering function when nesting loops: -1+H, Removing the self-loops: 43 44 46 50 53. Adding an epsilon transition (to model nonexecution of the loops): 68. Removing duplicate transition: 65. Removed all Self-loops using metering functions (where possible): Start location: f0 27: f0 -> f2 : A'=0, B'=C, D'=E, F'=3, G'=free_5, H'=0, Q'=0, J'=3, K'=free_5, L'=2, [ 3>=free_5 && free_5>=1 ], cost: 2 28: f0 -> f2 : A'=0, B'=C, D'=E, F'=3, G'=free_6, H'=0, Q'=0, J'=3, K'=free_6, L'=2, [ 7>=free_6 && free_6>=5 ], cost: 2 29: f0 -> f2 : A'=0, B'=1+C, C'=1+C, D'=1+E, E'=1+E, F'=3, G'=4, H'=1, Q'=0, J'=3, K'=4, L'=2, [], cost: 2 63: f2 -> [7] : A'=0, B'=1+C, C'=1+C, D'=1+E, E'=1+E, F'=free_32, G'=4, H'=0, Q'=0, J'=free_32, K'=4, L'=2, [ M>=2+E && N>=2+C && M>=1 && N>=1 && 7>=free_32 && free_32>=1 ], cost: 4 64: f2 -> [7] : A'=0, B'=C, D'=E, F'=free_27, G'=free_26, H'=0, Q'=0, J'=free_27, K'=free_26, L'=2, [ H==1 && M>=1 && N>=1 && 7>=free_27 && 3>=free_26 && free_26>=1 && free_27>=1 ], cost: 4*H 66: f2 -> [7] : A'=0, B'=-1+H+C, C'=-1+H+C, D'=-1+H+E, E'=-1+H+E, F'=free_32, G'=4, H'=0, Q'=0, J'=free_32, K'=4, L'=2, [ H==1 && M>=2+E && N>=2+C && M>=1 && N>=1 && 7>=free_32 && free_32>=1 ], cost: -4+4*H 67: f2 -> [7] : A'=0, B'=C, D'=E, F'=free_31, G'=free_30, H'=0, Q'=0, J'=free_31, K'=free_30, L'=2, [ H==1 && M>=1 && M>=1+E && N>=1 && N>=1+C && 7>=free_30 && 7>=free_31 && free_30>=5 && free_31>=1 ], cost: 4*H 68: f2 -> [7] : [], cost: 0 Applied chaining over branches and pruning: Start location: f0 Final control flow graph problem, now checking costs for infinitely many models: Start location: f0 Computing complexity for remaining 0 transitions. The final runtime is determined by this resulting transition: Final Guard: Final Cost: 1 Obtained the following complexity w.r.t. the length of the input n: Complexity class: const Complexity value: 0 WORST_CASE(Omega(1),?)