Trying to load file: main.koat Initial Control flow graph problem: Start location: f1 0: f1 -> f2 : [ A>=1 && B>=1 ], cost: 1 1: f2 -> f2 : A'=-1+A, [ A>=2 && B>=1 ], cost: 1 2: f2 -> f2 : B'=-1+B, [ A>=1 && B>=2 ], cost: 1 Eliminating 2 self-loops for location f2 Self-Loop 1 has the metering function: -1+A, resulting in the new transition 3. Self-Loop 2 has the metering function: -1+B, resulting in the new transition 4. Removing the self-loops: 1 2. Removed all Self-loops using metering functions (where possible): Start location: f1 0: f1 -> f2 : [ A>=1 && B>=1 ], cost: 1 3: f2 -> [2] : A'=1, [ A>=2 && B>=1 ], cost: -1+A 4: f2 -> [2] : B'=1, [ A>=1 && B>=2 ], cost: -1+B Applied chaining over branches and pruning: Start location: f1 5: f1 -> [2] : A'=1, [ A>=1 && B>=1 && A>=2 && B>=1 ], cost: A 6: f1 -> [2] : B'=1, [ A>=1 && B>=1 && A>=1 && B>=2 ], cost: B Final control flow graph problem, now checking costs for infinitely many models: Start location: f1 5: f1 -> [2] : A'=1, [ A>=1 && B>=1 && A>=2 && B>=1 ], cost: A 6: f1 -> [2] : B'=1, [ A>=1 && B>=1 && A>=1 && B>=2 ], cost: B Computing complexity for remaining 2 transitions. Found configuration with infinitely models for cost: A and guard: A>=1 && B>=1 && A>=2 && B>=1: B: Pos, A: Pos Found new complexity n^1, because: Found infinity configuration. The final runtime is determined by this resulting transition: Final Guard: A>=1 && B>=1 && A>=2 && B>=1 Final Cost: A Obtained the following complexity w.r.t. the length of the input n: Complexity class: n^1 Complexity value: 1 WORST_CASE(Omega(n^1),?)