Trying to load file: main.koat Initial Control flow graph problem: Start location: f0 0: f0 -> f18 : A'=3, B'=3, C'=0, D'=3, [], cost: 1 3: f18 -> f25 : E'=D, F'=D, G'=-3, H'=4, Q'=0, [], cost: 1 13: f10 -> f18 : D'=B, [ C>=1+A ], cost: 1 1: f10 -> f10 : [ 0>=A && A>=C ], cost: 1 2: f10 -> f10 : B'=B+A, [ A>=1 && A>=C ], cost: 1 4: f25 -> f25 : [ 0>=G && G>=Q ], cost: 1 5: f25 -> f25 : H'=H+G, [ G>=1 && G>=Q ], cost: 1 12: f25 -> f33 : K'=H, [ Q>=1+G ], cost: 1 6: f33 -> f40 : J'=K, L'=K, M'=3, N'=-6, O'=0, [], cost: 1 7: f40 -> f40 : [ 0>=M && M>=O ], cost: 1 8: f40 -> f40 : N'=N+M, [ M>=1 && M>=O ], cost: 1 11: f40 -> f48 : Q_1'=N, [ O>=1+M ], cost: 1 9: f48 -> f52 : P'=Q_1, R'=Q_1, [ 4>=F ], cost: 1 10: f48 -> f52 : P'=Q_1, R'=Q_1, [ F>=5 ], cost: 1 Simplified the transitions: Start location: f0 0: f0 -> f18 : A'=3, B'=3, C'=0, D'=3, [], cost: 1 3: f18 -> f25 : E'=D, F'=D, G'=-3, H'=4, Q'=0, [], cost: 1 4: f25 -> f25 : [ 0>=G && G>=Q ], cost: 1 5: f25 -> f25 : H'=H+G, [ G>=1 && G>=Q ], cost: 1 12: f25 -> f33 : K'=H, [ Q>=1+G ], cost: 1 6: f33 -> f40 : J'=K, L'=K, M'=3, N'=-6, O'=0, [], cost: 1 7: f40 -> f40 : [ 0>=M && M>=O ], cost: 1 8: f40 -> f40 : N'=N+M, [ M>=1 && M>=O ], cost: 1 Eliminating 2 self-loops for location f25 Self-Loop 4 has unbounded runtime, resulting in the new transition 14. Self-Loop 5 has unbounded runtime, resulting in the new transition 15. Removing the self-loops: 4 5. Eliminating 2 self-loops for location f40 Self-Loop 7 has unbounded runtime, resulting in the new transition 16. Self-Loop 8 has unbounded runtime, resulting in the new transition 17. Removing the self-loops: 7 8. Removed all Self-loops using metering functions (where possible): Start location: f0 0: f0 -> f18 : A'=3, B'=3, C'=0, D'=3, [], cost: 1 3: f18 -> f25 : E'=D, F'=D, G'=-3, H'=4, Q'=0, [], cost: 1 14: f25 -> [8] : [ 0>=G && G>=Q ], cost: INF 15: f25 -> [8] : [ G>=1 && G>=Q ], cost: INF 6: f33 -> f40 : J'=K, L'=K, M'=3, N'=-6, O'=0, [], cost: 1 16: f40 -> [9] : [ 0>=M && M>=O ], cost: INF 17: f40 -> [9] : [ M>=1 && M>=O ], cost: INF 12: [8] -> f33 : K'=H, [ Q>=1+G ], cost: 1 Applied simple chaining: Start location: f0 0: f0 -> f25 : A'=3, B'=3, C'=0, D'=3, E'=3, F'=3, G'=-3, H'=4, Q'=0, [], cost: 2 14: f25 -> [8] : [ 0>=G && G>=Q ], cost: INF 15: f25 -> [8] : [ G>=1 && G>=Q ], cost: INF 16: f40 -> [9] : [ 0>=M && M>=O ], cost: INF 17: f40 -> [9] : [ M>=1 && M>=O ], cost: INF 12: [8] -> f40 : J'=H, K'=H, L'=H, M'=3, N'=-6, O'=0, [ Q>=1+G ], cost: 2 Applied chaining over branches and pruning: Start location: f0 Final control flow graph problem, now checking costs for infinitely many models: Start location: f0 Computing complexity for remaining 0 transitions. The final runtime is determined by this resulting transition: Final Guard: Final Cost: 1 Obtained the following complexity w.r.t. the length of the input n: Complexity class: const Complexity value: 0 WORST_CASE(Omega(1),?)