Trying to load file: main.koat Initial Control flow graph problem: Start location: f0 0: f0 -> f1 : [], cost: 1 1: f1 -> f1 : A'=-1000+A, [ A>=1201 ], cost: 1 Eliminating 1 self-loops for location f1 Self-Loop 1 has the metering function: meter, resulting in the new transition 2. Removing the self-loops: 1. Removed all Self-loops using metering functions (where possible): Start location: f0 0: f0 -> f1 : [], cost: 1 2: f1 -> [2] : A'=-1000*meter+A, [ A>=1201 && 1000*meter==-1200+A ], cost: meter Applied simple chaining: Start location: f0 0: f0 -> [2] : A'=-1000*meter+A, [ A>=1201 && 1000*meter==-1200+A ], cost: 1+meter Final control flow graph problem, now checking costs for infinitely many models: Start location: f0 0: f0 -> [2] : A'=-1000*meter+A, [ A>=1201 && 1000*meter==-1200+A ], cost: 1+meter Computing complexity for remaining 1 transitions. Found configuration with infinitely models for cost: 1+meter and guard: A>=1201 && 1000*meter==-1200+A: meter: Pos, A: Both Found new complexity n^1, because: Found infinity configuration. The final runtime is determined by this resulting transition: Final Guard: A>=1201 && 1000*meter==-1200+A Final Cost: 1+meter Obtained the following complexity w.r.t. the length of the input n: Complexity class: n^1 Complexity value: 1 WORST_CASE(Omega(n^1),?)