Trying to load file: main.koat Initial Control flow graph problem: Start location: f0 0: f18 -> f18 : B'=1+B, [ A>=1+B ], cost: 1 5: f18 -> f24 : B'=0, [ B>=A ], cost: 1 1: f24 -> f24 : B'=1+B, [ A>=1+B ], cost: 1 4: f24 -> f31 : B'=0, [ B>=A ], cost: 1 2: f31 -> f31 : B'=1+B, [ A>=1+B ], cost: 1 3: f31 -> f39 : [ B>=A ], cost: 1 6: f0 -> f18 : A'=10, B'=0, C'=10, D'=free_1, E'=10, F'=free, [], cost: 1 Simplified the transitions: Start location: f0 0: f18 -> f18 : B'=1+B, [ A>=1+B ], cost: 1 5: f18 -> f24 : B'=0, [ B>=A ], cost: 1 1: f24 -> f24 : B'=1+B, [ A>=1+B ], cost: 1 4: f24 -> f31 : B'=0, [ B>=A ], cost: 1 2: f31 -> f31 : B'=1+B, [ A>=1+B ], cost: 1 6: f0 -> f18 : A'=10, B'=0, C'=10, D'=free_1, E'=10, F'=free, [], cost: 1 Eliminating 1 self-loops for location f18 Self-Loop 0 has the metering function: -B+A, resulting in the new transition 7. Removing the self-loops: 0. Eliminating 1 self-loops for location f24 Self-Loop 1 has the metering function: -B+A, resulting in the new transition 8. Removing the self-loops: 1. Eliminating 1 self-loops for location f31 Self-Loop 2 has the metering function: -B+A, resulting in the new transition 9. Removing the self-loops: 2. Removed all Self-loops using metering functions (where possible): Start location: f0 7: f18 -> [5] : B'=A, [ A>=1+B ], cost: -B+A 8: f24 -> [6] : B'=A, [ A>=1+B ], cost: -B+A 9: f31 -> [7] : B'=A, [ A>=1+B ], cost: -B+A 6: f0 -> f18 : A'=10, B'=0, C'=10, D'=free_1, E'=10, F'=free, [], cost: 1 5: [5] -> f24 : B'=0, [ B>=A ], cost: 1 4: [6] -> f31 : B'=0, [ B>=A ], cost: 1 Applied simple chaining: Start location: f0 6: f0 -> [7] : A'=10, B'=10, C'=10, D'=free_1, E'=10, F'=free, [ 10>=1 && 10>=10 && 10>=1 && 10>=10 && 10>=1 ], cost: 33 Final control flow graph problem, now checking costs for infinitely many models: Start location: f0 6: f0 -> [7] : A'=10, B'=10, C'=10, D'=free_1, E'=10, F'=free, [ 10>=1 && 10>=10 && 10>=1 && 10>=10 && 10>=1 ], cost: 33 Computing complexity for remaining 1 transitions. Found new complexity const, because: const cost. The final runtime is determined by this resulting transition: Final Guard: 10>=1 && 10>=10 && 10>=1 && 10>=10 && 10>=1 Final Cost: 33 Obtained the following complexity w.r.t. the length of the input n: Complexity class: const Complexity value: 0 WORST_CASE(Omega(1),?)