Trying to load file: main.koat Initial Control flow graph problem: Start location: f0 0: f0 -> f4 : A'=0, [], cost: 1 1: f4 -> f4 : A'=1+A, [ 1>=A ], cost: 1 5: f4 -> f10 : B'=0, [ A>=2 ], cost: 1 2: f10 -> f10 : B'=1+B, [ 1>=B ], cost: 1 3: f10 -> f18 : [ B>=2 && 0>=1+free ], cost: 1 4: f10 -> f18 : [ B>=2 ], cost: 1 Simplified the transitions: Start location: f0 0: f0 -> f4 : A'=0, [], cost: 1 1: f4 -> f4 : A'=1+A, [ 1>=A ], cost: 1 5: f4 -> f10 : B'=0, [ A>=2 ], cost: 1 2: f10 -> f10 : B'=1+B, [ 1>=B ], cost: 1 Eliminating 1 self-loops for location f4 Self-Loop 1 has the metering function: 2-A, resulting in the new transition 6. Removing the self-loops: 1. Eliminating 1 self-loops for location f10 Self-Loop 2 has the metering function: 2-B, resulting in the new transition 7. Removing the self-loops: 2. Removed all Self-loops using metering functions (where possible): Start location: f0 0: f0 -> f4 : A'=0, [], cost: 1 6: f4 -> [4] : A'=2, [ 1>=A ], cost: 2-A 7: f10 -> [5] : B'=2, [ 1>=B ], cost: 2-B 5: [4] -> f10 : B'=0, [ A>=2 ], cost: 1 Applied simple chaining: Start location: f0 0: f0 -> [5] : A'=2, B'=2, [ 1>=0 && 2>=2 && 1>=0 ], cost: 6 Final control flow graph problem, now checking costs for infinitely many models: Start location: f0 0: f0 -> [5] : A'=2, B'=2, [ 1>=0 && 2>=2 && 1>=0 ], cost: 6 Computing complexity for remaining 1 transitions. Found new complexity const, because: const cost. The final runtime is determined by this resulting transition: Final Guard: 1>=0 && 2>=2 && 1>=0 Final Cost: 6 Obtained the following complexity w.r.t. the length of the input n: Complexity class: const Complexity value: 0 WORST_CASE(Omega(1),?)