Trying to load file: main.koat Initial Control flow graph problem: Start location: start0 0: start -> stop : D'=F, [ 0>=A && B==C && D==E && F==A ], cost: 1 1: start -> lbl62 : B'=-1+F, D'=F, [ A>=1 && B==C && D==E && F==A ], cost: 1 6: lbl62 -> lbl62 : B'=-1+B, [ B>=1 && A>=D && A>=1+B && B>=0 && D>=1 && F==A ], cost: 1 5: lbl62 -> lbl72 : D'=-1+D, [ A>=D && A>=1 && D>=1 && B==0 && F==A ], cost: 1 2: lbl72 -> stop : [ A>=1 && D==0 && B==0 && F==A ], cost: 1 4: lbl72 -> lbl62 : B'=-1+F, [ A>=1 && D>=1 && D>=0 && A>=1+D && B==0 && F==A ], cost: 1 3: lbl72 -> lbl72 : B'=F, D'=-1+D, [ D>=1 && 0>=A && D>=0 && A>=1+D && B==0 && F==A ], cost: 1 7: start0 -> start : B'=C, D'=E, F'=A, [], cost: 1 Simplified the transitions: Start location: start0 1: start -> lbl62 : B'=-1+F, D'=F, [ A>=1 && B==C && D==E && F==A ], cost: 1 6: lbl62 -> lbl62 : B'=-1+B, [ B>=1 && A>=D && A>=1+B && D>=1 && F==A ], cost: 1 5: lbl62 -> lbl72 : D'=-1+D, [ A>=D && A>=1 && D>=1 && B==0 && F==A ], cost: 1 4: lbl72 -> lbl62 : B'=-1+F, [ A>=1 && D>=1 && A>=1+D && B==0 && F==A ], cost: 1 3: lbl72 -> lbl72 : B'=F, D'=-1+D, [ D>=1 && 0>=A && A>=1+D && B==0 && F==A ], cost: 1 7: start0 -> start : B'=C, D'=E, F'=A, [], cost: 1 Eliminating 1 self-loops for location lbl62 Self-Loop 6 has the metering function: B, resulting in the new transition 8. Removing the self-loops: 6. Eliminating 1 self-loops for location lbl72 Self-Loop 3 has unbounded runtime, resulting in the new transition 9. Removing the self-loops: 3. Removed all Self-loops using metering functions (where possible): Start location: start0 1: start -> lbl62 : B'=-1+F, D'=F, [ A>=1 && B==C && D==E && F==A ], cost: 1 8: lbl62 -> [5] : B'=0, [ B>=1 && A>=D && A>=1+B && D>=1 && F==A ], cost: B 9: lbl72 -> [6] : [ D>=1 && 0>=A && A>=1+D && B==0 && F==A ], cost: INF 7: start0 -> start : B'=C, D'=E, F'=A, [], cost: 1 5: [5] -> lbl72 : D'=-1+D, [ A>=D && A>=1 && D>=1 && B==0 && F==A ], cost: 1 4: [6] -> lbl62 : B'=-1+F, [ A>=1 && D>=1 && A>=1+D && B==0 && F==A ], cost: 1 Applied simple chaining: Start location: start0 8: lbl62 -> lbl72 : B'=0, D'=-1+D, [ B>=1 && A>=D && A>=1+B && D>=1 && F==A && A>=D && A>=1 && D>=1 && 0==0 && F==A ], cost: 1+B 9: lbl72 -> [6] : [ D>=1 && 0>=A && A>=1+D && B==0 && F==A ], cost: INF 7: start0 -> lbl62 : B'=-1+A, D'=A, F'=A, [ A>=1 && C==C && E==E && A==A ], cost: 2 4: [6] -> lbl62 : B'=-1+F, [ A>=1 && D>=1 && A>=1+D && B==0 && F==A ], cost: 1 Applied chaining over branches and pruning: Start location: start0 10: lbl62 -> [7] : B'=0, D'=-1+D, [ B>=1 && A>=D && A>=1+B && D>=1 && F==A && A>=D && A>=1 && D>=1 && 0==0 && F==A ], cost: 1+B 7: start0 -> lbl62 : B'=-1+A, D'=A, F'=A, [ A>=1 && C==C && E==E && A==A ], cost: 2 Applied simple chaining: Start location: start0 7: start0 -> [7] : B'=0, D'=-1+A, F'=A, [ A>=1 && C==C && E==E && A==A && -1+A>=1 && A>=A && A>=A && A>=1 && A==A && A>=A && A>=1 && A>=1 && 0==0 && A==A ], cost: 2+A Final control flow graph problem, now checking costs for infinitely many models: Start location: start0 7: start0 -> [7] : B'=0, D'=-1+A, F'=A, [ A>=1 && C==C && E==E && A==A && -1+A>=1 && A>=A && A>=A && A>=1 && A==A && A>=A && A>=1 && A>=1 && 0==0 && A==A ], cost: 2+A Computing complexity for remaining 1 transitions. Found configuration with infinitely models for cost: 2+A and guard: A>=1 && C==C && E==E && A==A && -1+A>=1 && A>=A && A>=A && A>=1 && A==A && A>=A && A>=1 && A>=1 && 0==0 && A==A: E: Both, C: Both, A: Pos Found new complexity n^1, because: Found infinity configuration. The final runtime is determined by this resulting transition: Final Guard: A>=1 && C==C && E==E && A==A && -1+A>=1 && A>=A && A>=A && A>=1 && A==A && A>=A && A>=1 && A>=1 && 0==0 && A==A Final Cost: 2+A Obtained the following complexity w.r.t. the length of the input n: Complexity class: n^1 Complexity value: 1 WORST_CASE(Omega(n^1),?)