Trying to load file: main.koat Initial Control flow graph problem: Start location: start0 0: start -> stop : [ A>=101 && B==C && D==E && F==A && G==H ], cost: 1 1: start -> stop : [ E>=1+C && B==C && D==E && F==A && G==H ], cost: 1 2: start -> lbl72 : B'=-1+B, D'=1+F, F'=D, G'=F, [ C>=E && 100>=A && B==C && D==E && F==A && G==H ], cost: 1 3: lbl72 -> stop : [ F>=101 && 100>=A && 101+B+F>=E+C+A && 1+B>=F && C>=1+B && C>=E && 1+B+F+G==E+C+A && B+F+D==E+C+A ], cost: 1 4: lbl72 -> stop : [ E+C+A>=1+2*B+F && 100>=A && 101+B+F>=E+C+A && 1+B>=F && C>=1+B && C>=E && 1+B+F+G==E+C+A && B+F+D==E+C+A ], cost: 1 5: lbl72 -> lbl72 : B'=-1+B, D'=1+F, F'=D, G'=F, [ 2*B+F>=E+C+A && 100>=F && 100>=A && 101+B+F>=E+C+A && 1+B>=F && C>=1+B && C>=E && 1+B+F+G==E+C+A && B+F+D==E+C+A ], cost: 1 6: start0 -> start : B'=C, D'=E, F'=A, G'=H, [], cost: 1 Simplified the transitions: Start location: start0 2: start -> lbl72 : B'=-1+B, D'=1+F, F'=D, G'=F, [ C>=E && 100>=A && B==C && D==E && F==A && G==H ], cost: 1 5: lbl72 -> lbl72 : B'=-1+B, D'=1+F, F'=D, G'=F, [ 2*B+F>=E+C+A && 100>=F && 100>=A && 101+B+F>=E+C+A && 1+B>=F && C>=1+B && C>=E && 1+B+F+G==E+C+A && B+F+D==E+C+A ], cost: 1 6: start0 -> start : B'=C, D'=E, F'=A, G'=H, [], cost: 1 Eliminating 1 self-loops for location lbl72 Self-Loop 5 has the metering function: E-B-F+C-D+A, resulting in the new transition 7. Removing the self-loops: 5. Removed all Self-loops using metering functions (where possible): Start location: start0 2: start -> lbl72 : B'=-1+B, D'=1+F, F'=D, G'=F, [ C>=E && 100>=A && B==C && D==E && F==A && G==H ], cost: 1 7: lbl72 -> [4] : B'=-E+2*B+F-C+D-A, D'=E-B-F+C+A, F'=-1+E-B-F+C+A, G'=-1+E-B-F+C+A, [ 2*B+F>=E+C+A && 100>=F && 100>=A && 101+B+F>=E+C+A && 1+B>=F && C>=1+B && C>=E && 1+B+F+G==E+C+A && B+F+D==E+C+A && D==F && D==G ], cost: E-B-F+C-D+A 6: start0 -> start : B'=C, D'=E, F'=A, G'=H, [], cost: 1 Applied simple chaining: Start location: start0 7: lbl72 -> [4] : B'=-E+2*B+F-C+D-A, D'=E-B-F+C+A, F'=-1+E-B-F+C+A, G'=-1+E-B-F+C+A, [ 2*B+F>=E+C+A && 100>=F && 100>=A && 101+B+F>=E+C+A && 1+B>=F && C>=1+B && C>=E && 1+B+F+G==E+C+A && B+F+D==E+C+A && D==F && D==G ], cost: E-B-F+C-D+A 6: start0 -> lbl72 : B'=-1+C, D'=1+A, F'=E, G'=A, [ C>=E && 100>=A && C==C && E==E && A==A && H==H ], cost: 2 Applied chaining over branches and pruning: Start location: start0 Final control flow graph problem, now checking costs for infinitely many models: Start location: start0 Computing complexity for remaining 0 transitions. The final runtime is determined by this resulting transition: Final Guard: Final Cost: 1 Obtained the following complexity w.r.t. the length of the input n: Complexity class: const Complexity value: 0 WORST_CASE(Omega(1),?)