Trying to load file: main.koat Initial Control flow graph problem: Start location: start0 0: start -> stop : [ 1>=A && B==C && D==A ], cost: 1 1: start -> lbl32 : D'=-1+D, [ A>=2 && B==C && D==A ], cost: 1 2: lbl32 -> stop : [ A>=2 && D==1 && B==C ], cost: 1 3: lbl32 -> lbl32 : D'=-1+D, [ D>=2 && D>=1 && A>=1+D && B==C ], cost: 1 4: start0 -> start : B'=C, D'=A, [], cost: 1 Simplified the transitions: Start location: start0 1: start -> lbl32 : D'=-1+D, [ A>=2 && B==C && D==A ], cost: 1 3: lbl32 -> lbl32 : D'=-1+D, [ D>=2 && A>=1+D && B==C ], cost: 1 4: start0 -> start : B'=C, D'=A, [], cost: 1 Eliminating 1 self-loops for location lbl32 Self-Loop 3 has the metering function: -1+D, resulting in the new transition 5. Removing the self-loops: 3. Removed all Self-loops using metering functions (where possible): Start location: start0 1: start -> lbl32 : D'=-1+D, [ A>=2 && B==C && D==A ], cost: 1 5: lbl32 -> [4] : D'=1, [ D>=2 && A>=1+D && B==C ], cost: -1+D 4: start0 -> start : B'=C, D'=A, [], cost: 1 Applied simple chaining: Start location: start0 4: start0 -> [4] : B'=C, D'=1, [ A>=2 && C==C && A==A && -1+A>=2 && A>=A && C==C ], cost: A Final control flow graph problem, now checking costs for infinitely many models: Start location: start0 4: start0 -> [4] : B'=C, D'=1, [ A>=2 && C==C && A==A && -1+A>=2 && A>=A && C==C ], cost: A Computing complexity for remaining 1 transitions. Found configuration with infinitely models for cost: A and guard: A>=2 && C==C && A==A && -1+A>=2 && A>=A && C==C: C: Both, A: Pos Found new complexity n^1, because: Found infinity configuration. The final runtime is determined by this resulting transition: Final Guard: A>=2 && C==C && A==A && -1+A>=2 && A>=A && C==C Final Cost: A Obtained the following complexity w.r.t. the length of the input n: Complexity class: n^1 Complexity value: 1 WORST_CASE(Omega(n^1),?)