Trying to load file: main.koat Initial Control flow graph problem: Start location: start0 0: start -> lbl51 : A'=free, C'=0, [ A==B && C==D ], cost: 1 1: lbl51 -> stop : [ C>=A && C>=0 && 9>=C ], cost: 1 2: lbl51 -> stop : [ A>=3+C && C>=0 && 9>=C ], cost: 1 4: lbl51 -> stop : [ A>=10 && A>=1+C && 2+C>=A && C>=0 && 9>=C ], cost: 1 3: lbl51 -> cut : [ A>=1+C && 2+C>=A && 9>=A && C>=0 && 9>=C ], cost: 1 5: cut -> lbl51 : A'=free_1, C'=A, [ 2+C>=A && 9>=A && C>=0 && A>=1+C ], cost: 1 6: start0 -> start : A'=B, C'=D, [], cost: 1 Simplified the transitions: Start location: start0 0: start -> lbl51 : A'=free, C'=0, [ A==B && C==D ], cost: 1 3: lbl51 -> cut : [ A>=1+C && 2+C>=A && 9>=A && C>=0 && 9>=C ], cost: 1 5: cut -> lbl51 : A'=free_1, C'=A, [ 2+C>=A && 9>=A && C>=0 && A>=1+C ], cost: 1 6: start0 -> start : A'=B, C'=D, [], cost: 1 Applied simple chaining: Start location: start0 3: lbl51 -> lbl51 : A'=free_1, C'=A, [ A>=1+C && 2+C>=A && 9>=A && C>=0 && 9>=C && 2+C>=A && 9>=A && C>=0 && A>=1+C ], cost: 2 6: start0 -> lbl51 : A'=free, C'=0, [ B==B && D==D ], cost: 2 Eliminating 1 self-loops for location lbl51 Removing the self-loops: 3. Adding an epsilon transition (to model nonexecution of the loops): 8. Removed all Self-loops using metering functions (where possible): Start location: start0 7: lbl51 -> [5] : A'=free_1, C'=A, [ A>=1+C && 2+C>=A && 9>=A && C>=0 && 9>=C ], cost: 2 8: lbl51 -> [5] : [], cost: 0 6: start0 -> lbl51 : A'=free, C'=0, [ B==B && D==D ], cost: 2 Applied chaining over branches and pruning: Start location: start0 Final control flow graph problem, now checking costs for infinitely many models: Start location: start0 Computing complexity for remaining 0 transitions. The final runtime is determined by this resulting transition: Final Guard: Final Cost: 1 Obtained the following complexity w.r.t. the length of the input n: Complexity class: const Complexity value: 0 WORST_CASE(Omega(1),?)