Trying to load file: main.koat Initial Control flow graph problem: Start location: start0 0: start -> stop : [ A>=101 && B==C && D==E && F==G && H==A ], cost: 1 1: start -> stop : [ G>=1+E && B==C && D==E && F==G && H==A ], cost: 1 2: start -> lbl71 : B'=H, D'=-1+D, F'=1+H, H'=F, [ E>=G && 100>=A && B==C && D==E && F==G && H==A ], cost: 1 3: lbl71 -> stop : [ E+G+A>=102+B+D && E>=1+D && 100>=A && E>=G && 2+B+2*D>=E+G+A && 100>=B && F==1+B && 1+H+B+D==E+G+A ], cost: 1 4: lbl71 -> stop : [ B>=D && E>=1+D && 100>=A && E>=G && 2+B+2*D>=E+G+A && 100>=B && F==1+B && 1+H+B+D==E+G+A ], cost: 1 5: lbl71 -> lbl71 : B'=H, D'=-1+D, F'=1+H, H'=F, [ D>=1+B && 101+B+D>=E+G+A && E>=1+D && 100>=A && E>=G && 2+B+2*D>=E+G+A && 100>=B && F==1+B && 1+H+B+D==E+G+A ], cost: 1 6: start0 -> start : B'=C, D'=E, F'=G, H'=A, [], cost: 1 Simplified the transitions: Start location: start0 2: start -> lbl71 : B'=H, D'=-1+D, F'=1+H, H'=F, [ E>=G && 100>=A && B==C && D==E && F==G && H==A ], cost: 1 5: lbl71 -> lbl71 : B'=H, D'=-1+D, F'=1+H, H'=F, [ D>=1+B && 101+B+D>=E+G+A && E>=1+D && 100>=A && E>=G && 2+B+2*D>=E+G+A && 100>=B && F==1+B && 1+H+B+D==E+G+A ], cost: 1 6: start0 -> start : B'=C, D'=E, F'=G, H'=A, [], cost: 1 Eliminating 1 self-loops for location lbl71 Self-Loop 5 has the metering function: -1-2*H+2*E-B-F+2*G-2*D+2*A, resulting in the new transition 7. Removing the self-loops: 5. Removed all Self-loops using metering functions (where possible): Start location: start0 2: start -> lbl71 : B'=H, D'=-1+D, F'=1+H, H'=F, [ E>=G && 100>=A && B==C && D==E && F==G && H==A ], cost: 1 7: lbl71 -> [4] : B'=B, D'=1+2*H-2*E+B+F-2*G+3*D-2*A, F'=1+B, H'=B, [ D>=1+B && 101+B+D>=E+G+A && E>=1+D && 100>=A && E>=G && 2+B+2*D>=E+G+A && 100>=B && F==1+B && 1+H+B+D==E+G+A && B==F && B==H ], cost: -1-2*H+2*E-B-F+2*G-2*D+2*A 6: start0 -> start : B'=C, D'=E, F'=G, H'=A, [], cost: 1 Applied simple chaining: Start location: start0 7: lbl71 -> [4] : B'=B, D'=1+2*H-2*E+B+F-2*G+3*D-2*A, F'=1+B, H'=B, [ D>=1+B && 101+B+D>=E+G+A && E>=1+D && 100>=A && E>=G && 2+B+2*D>=E+G+A && 100>=B && F==1+B && 1+H+B+D==E+G+A && B==F && B==H ], cost: -1-2*H+2*E-B-F+2*G-2*D+2*A 6: start0 -> lbl71 : B'=A, D'=-1+E, F'=1+A, H'=G, [ E>=G && 100>=A && C==C && E==E && G==G && A==A ], cost: 2 Applied chaining over branches and pruning: Start location: start0 Final control flow graph problem, now checking costs for infinitely many models: Start location: start0 Computing complexity for remaining 0 transitions. The final runtime is determined by this resulting transition: Final Guard: Final Cost: 1 Obtained the following complexity w.r.t. the length of the input n: Complexity class: const Complexity value: 0 WORST_CASE(Omega(1),?)