Trying to load file: main.koat Initial Control flow graph problem: Start location: start0 0: start -> stop : [ 0>=A && B==A && C==D && E==F ], cost: 1 1: start -> lbl71 : B'=-1+B, C'=-1+C, E'=1+E, [ A>=1 && B==A && C==D && E==F ], cost: 1 2: lbl71 -> stop : [ D>=1+C && B==0 && E+C==F+D && C+A==D ], cost: 1 3: lbl71 -> lbl71 : B'=-1+B, C'=-1+C, E'=1+E, [ C+A>=1+D && D>=1+C && C+A>=D && E+C==F+D && B+D==C+A ], cost: 1 4: start0 -> start : B'=A, C'=D, E'=F, [], cost: 1 Simplified the transitions: Start location: start0 1: start -> lbl71 : B'=-1+B, C'=-1+C, E'=1+E, [ A>=1 && B==A && C==D && E==F ], cost: 1 3: lbl71 -> lbl71 : B'=-1+B, C'=-1+C, E'=1+E, [ C+A>=1+D && D>=1+C && E+C==F+D && B+D==C+A ], cost: 1 4: start0 -> start : B'=A, C'=D, E'=F, [], cost: 1 Eliminating 1 self-loops for location lbl71 Self-Loop 3 has the metering function: C-D+A, resulting in the new transition 5. Removing the self-loops: 3. Removed all Self-loops using metering functions (where possible): Start location: start0 1: start -> lbl71 : B'=-1+B, C'=-1+C, E'=1+E, [ A>=1 && B==A && C==D && E==F ], cost: 1 5: lbl71 -> [4] : B'=B-C+D-A, C'=D-A, E'=E+C-D+A, [ C+A>=1+D && D>=1+C && E+C==F+D && B+D==C+A ], cost: C-D+A 4: start0 -> start : B'=A, C'=D, E'=F, [], cost: 1 Applied simple chaining: Start location: start0 4: start0 -> [4] : B'=0, C'=D-A, E'=F+A, [ A>=1 && A==A && D==D && F==F && -1+D+A>=1+D && D>=D && F+D==F+D && -1+D+A==-1+D+A ], cost: 1+A Final control flow graph problem, now checking costs for infinitely many models: Start location: start0 4: start0 -> [4] : B'=0, C'=D-A, E'=F+A, [ A>=1 && A==A && D==D && F==F && -1+D+A>=1+D && D>=D && F+D==F+D && -1+D+A==-1+D+A ], cost: 1+A Computing complexity for remaining 1 transitions. Found configuration with infinitely models for cost: 1+A and guard: A>=1 && A==A && D==D && F==F && -1+D+A>=1+D && D>=D && F+D==F+D && -1+D+A==-1+D+A: F: Both, D: Both, A: Pos Found new complexity n^1, because: Found infinity configuration. The final runtime is determined by this resulting transition: Final Guard: A>=1 && A==A && D==D && F==F && -1+D+A>=1+D && D>=D && F+D==F+D && -1+D+A==-1+D+A Final Cost: 1+A Obtained the following complexity w.r.t. the length of the input n: Complexity class: n^1 Complexity value: 1 WORST_CASE(Omega(n^1),?)