Trying to load file: main.koat Initial Control flow graph problem: Start location: start0 0: start -> stop : [ A>=30 && B==C && D==A ], cost: 1 1: start -> lbl171 : B'=-10+B, D'=2+D, [ C>=A && 29>=A && B==C && D==A ], cost: 1 2: start -> lbl151 : B'=7+B, D'=1+D, [ A>=1+C && C>=6 && 29>=A && B==C && D==A ], cost: 1 3: start -> lbl151 : B'=2+B, D'=1+D, [ A>=1+C && 5>=C && 29>=A && B==C && D==A ], cost: 1 4: lbl171 -> stop : [ D>=30 && 29>=A && B+5*D>=C+5*A && C+7*D>=24+B+7*A && 1674+7*B>=7*C+19*D+35*A && 12+B>=D ], cost: 1 5: lbl171 -> lbl171 : B'=-10+B, D'=2+D, [ B>=D && 29>=D && 29>=A && B+5*D>=C+5*A && C+7*D>=24+B+7*A && 1674+7*B>=7*C+19*D+35*A && 12+B>=D ], cost: 1 6: lbl171 -> lbl151 : B'=7+B, D'=1+D, [ D>=1+B && B>=6 && 29>=D && 29>=A && B+5*D>=C+5*A && C+7*D>=24+B+7*A && 1674+7*B>=7*C+19*D+35*A && 12+B>=D ], cost: 1 7: lbl171 -> lbl151 : B'=2+B, D'=1+D, [ D>=1+B && 5>=B && 29>=D && 29>=A && B+5*D>=C+5*A && C+7*D>=24+B+7*A && 1674+7*B>=7*C+19*D+35*A && 12+B>=D ], cost: 1 8: lbl151 -> lbl171 : B'=-10+B, D'=2+D, [ B>=D && 6*D>=7+C+5*A && B+5*D>=7+C+5*A && D>=1+A && 29>=A && 203+B>=C+2*D+5*A && 1561+2*B>=7*C+14*D+35*A && 23*B+140*D>=161+28*C+140*A && 5719+23*B>=28*C+56*D+140*A && 5+D>=B && C+7*D>=B+7*A ], cost: 1 9: lbl151 -> lbl151 : B'=7+B, D'=1+D, [ D>=1+B && B>=6 && 6*D>=7+C+5*A && B+5*D>=7+C+5*A && D>=1+A && 29>=A && 203+B>=C+2*D+5*A && 1561+2*B>=7*C+14*D+35*A && 23*B+140*D>=161+28*C+140*A && 5719+23*B>=28*C+56*D+140*A && 5+D>=B && C+7*D>=B+7*A ], cost: 1 10: lbl151 -> lbl151 : B'=2+B, D'=1+D, [ D>=1+B && 5>=B && 6*D>=7+C+5*A && B+5*D>=7+C+5*A && D>=1+A && 29>=A && 203+B>=C+2*D+5*A && 1561+2*B>=7*C+14*D+35*A && 23*B+140*D>=161+28*C+140*A && 5719+23*B>=28*C+56*D+140*A && 5+D>=B && C+7*D>=B+7*A ], cost: 1 11: start0 -> start : B'=C, D'=A, [], cost: 1 Simplified the transitions: Start location: start0 1: start -> lbl171 : B'=-10+B, D'=2+D, [ C>=A && 29>=A && B==C && D==A ], cost: 1 2: start -> lbl151 : B'=7+B, D'=1+D, [ A>=1+C && C>=6 && 29>=A && B==C && D==A ], cost: 1 3: start -> lbl151 : B'=2+B, D'=1+D, [ A>=1+C && 5>=C && 29>=A && B==C && D==A ], cost: 1 5: lbl171 -> lbl171 : B'=-10+B, D'=2+D, [ B>=D && 29>=D && 29>=A && B+5*D>=C+5*A && C+7*D>=24+B+7*A && 1674+7*B>=7*C+19*D+35*A ], cost: 1 6: lbl171 -> lbl151 : B'=7+B, D'=1+D, [ D>=1+B && B>=6 && 29>=D && 29>=A && B+5*D>=C+5*A && C+7*D>=24+B+7*A && 1674+7*B>=7*C+19*D+35*A && 12+B>=D ], cost: 1 7: lbl171 -> lbl151 : B'=2+B, D'=1+D, [ D>=1+B && 5>=B && 29>=D && 29>=A && B+5*D>=C+5*A && C+7*D>=24+B+7*A && 1674+7*B>=7*C+19*D+35*A && 12+B>=D ], cost: 1 8: lbl151 -> lbl171 : B'=-10+B, D'=2+D, [ B>=D && 6*D>=7+C+5*A && B+5*D>=7+C+5*A && D>=1+A && 29>=A && 203+B>=C+2*D+5*A && 1561+2*B>=7*C+14*D+35*A && 23*B+140*D>=161+28*C+140*A && 5719+23*B>=28*C+56*D+140*A && 5+D>=B && C+7*D>=B+7*A ], cost: 1 9: lbl151 -> lbl151 : B'=7+B, D'=1+D, [ D>=1+B && B>=6 && 6*D>=7+C+5*A && B+5*D>=7+C+5*A && D>=1+A && 29>=A && 203+B>=C+2*D+5*A && 1561+2*B>=7*C+14*D+35*A && 23*B+140*D>=161+28*C+140*A && 5719+23*B>=28*C+56*D+140*A && C+7*D>=B+7*A ], cost: 1 10: lbl151 -> lbl151 : B'=2+B, D'=1+D, [ D>=1+B && 5>=B && 6*D>=7+C+5*A && B+5*D>=7+C+5*A && D>=1+A && 29>=A && 203+B>=C+2*D+5*A && 1561+2*B>=7*C+14*D+35*A && 23*B+140*D>=161+28*C+140*A && 5719+23*B>=28*C+56*D+140*A && C+7*D>=B+7*A ], cost: 1 11: start0 -> start : B'=C, D'=A, [], cost: 1 Eliminating 1 self-loops for location lbl171 Self-Loop 13 has unbounded runtime, resulting in the new transition 15. Removing the self-loops: 5 12 13. Adding an epsilon transition (to model nonexecution of the loops): 16. Eliminating 2 self-loops for location lbl151 Self-Loop 9 has the metering function: meter, resulting in the new transition 17. Self-Loop 18 has unbounded runtime, resulting in the new transition 21. Removing the self-loops: 9 10 18 19. Adding an epsilon transition (to model nonexecution of the loops): 22. Removed all Self-loops using metering functions (where possible): Start location: start0 1: start -> lbl171 : B'=-10+B, D'=2+D, [ C>=A && 29>=A && B==C && D==A ], cost: 1 2: start -> lbl151 : B'=7+B, D'=1+D, [ A>=1+C && C>=6 && 29>=A && B==C && D==A ], cost: 1 3: start -> lbl151 : B'=2+B, D'=1+D, [ A>=1+C && 5>=C && 29>=A && B==C && D==A ], cost: 1 14: lbl171 -> [5] : B'=-10+B, D'=2+D, [ B>=D && 29>=D && 29>=A && B+5*D>=C+5*A && C+7*D>=24+B+7*A && 1674+7*B>=7*C+19*D+35*A ], cost: 1 15: lbl171 -> [5] : [ B>=D && 29>=D && 29>=A && B+5*D>=C+5*A && C+7*D>=24+B+7*A && 1674+7*B>=7*C+19*D+35*A && D>B ], cost: INF 16: lbl171 -> [5] : [], cost: 0 17: lbl151 -> [6] : B'=B+7*meter, D'=meter+D, [ D>=1+B && B>=6 && 6*D>=7+C+5*A && B+5*D>=7+C+5*A && D>=1+A && 29>=A && 203+B>=C+2*D+5*A && 1561+2*B>=7*C+14*D+35*A && 23*B+140*D>=161+28*C+140*A && 5719+23*B>=28*C+56*D+140*A && C+7*D>=B+7*A && 6*meter==-B+D ], cost: meter 20: lbl151 -> [6] : B'=2+B, D'=1+D, [ D>=1+B && 5>=B && 6*D>=7+C+5*A && B+5*D>=7+C+5*A && D>=1+A && 29>=A && 203+B>=C+2*D+5*A && 1561+2*B>=7*C+14*D+35*A && 23*B+140*D>=161+28*C+140*A && 5719+23*B>=28*C+56*D+140*A && C+7*D>=B+7*A ], cost: 1 21: lbl151 -> [6] : [ D>=1+B && 5>=B && 6*D>=7+C+5*A && B+5*D>=7+C+5*A && D>=1+A && 29>=A && 203+B>=C+2*D+5*A && 1561+2*B>=7*C+14*D+35*A && 23*B+140*D>=161+28*C+140*A && 5719+23*B>=28*C+56*D+140*A && C+7*D>=B+7*A && B>D ], cost: INF 22: lbl151 -> [6] : [], cost: 0 11: start0 -> start : B'=C, D'=A, [], cost: 1 6: [5] -> lbl151 : B'=7+B, D'=1+D, [ D>=1+B && B>=6 && 29>=D && 29>=A && B+5*D>=C+5*A && C+7*D>=24+B+7*A && 1674+7*B>=7*C+19*D+35*A && 12+B>=D ], cost: 1 7: [5] -> lbl151 : B'=2+B, D'=1+D, [ D>=1+B && 5>=B && 29>=D && 29>=A && B+5*D>=C+5*A && C+7*D>=24+B+7*A && 1674+7*B>=7*C+19*D+35*A && 12+B>=D ], cost: 1 8: [6] -> lbl171 : B'=-10+B, D'=2+D, [ B>=D && 6*D>=7+C+5*A && B+5*D>=7+C+5*A && D>=1+A && 29>=A && 203+B>=C+2*D+5*A && 1561+2*B>=7*C+14*D+35*A && 23*B+140*D>=161+28*C+140*A && 5719+23*B>=28*C+56*D+140*A && 5+D>=B && C+7*D>=B+7*A ], cost: 1 Applied chaining over branches and pruning: Start location: start0 26: lbl171 -> lbl151 : B'=-3+B, D'=3+D, [ B>=D && 29>=D && 29>=A && B+5*D>=C+5*A && C+7*D>=24+B+7*A && 1674+7*B>=7*C+19*D+35*A && 2+D>=-9+B && -10+B>=6 && 29>=2+D && 29>=A && B+5*D>=C+5*A && 14+C+7*D>=14+B+7*A && 1604+7*B>=38+7*C+19*D+35*A && 2+B>=2+D ], cost: 2 27: lbl171 -> lbl151 : B'=-8+B, D'=3+D, [ B>=D && 29>=D && 29>=A && B+5*D>=C+5*A && C+7*D>=24+B+7*A && 1674+7*B>=7*C+19*D+35*A && 2+D>=-9+B && 5>=-10+B && 29>=2+D && 29>=A && B+5*D>=C+5*A && 14+C+7*D>=14+B+7*A && 1604+7*B>=38+7*C+19*D+35*A && 2+B>=2+D ], cost: 2 30: lbl171 -> lbl151 : B'=7+B, D'=1+D, [ D>=1+B && B>=6 && 29>=D && 29>=A && B+5*D>=C+5*A && C+7*D>=24+B+7*A && 1674+7*B>=7*C+19*D+35*A && 12+B>=D ], cost: 1 31: lbl171 -> lbl151 : B'=2+B, D'=1+D, [ D>=1+B && 5>=B && 29>=D && 29>=A && B+5*D>=C+5*A && C+7*D>=24+B+7*A && 1674+7*B>=7*C+19*D+35*A && 12+B>=D ], cost: 1 28: lbl171 -> [7] : [ B>=D && 29>=D && 29>=A && B+5*D>=C+5*A && C+7*D>=24+B+7*A && 1674+7*B>=7*C+19*D+35*A && D>B ], cost: INF 29: lbl171 -> [8] : [ B>=D && 29>=D && 29>=A && B+5*D>=C+5*A && C+7*D>=24+B+7*A && 1674+7*B>=7*C+19*D+35*A && D>B ], cost: INF 32: lbl151 -> lbl171 : B'=-10+B+7*meter, D'=2+meter+D, [ D>=1+B && B>=6 && 6*D>=7+C+5*A && B+5*D>=7+C+5*A && D>=1+A && 29>=A && 203+B>=C+2*D+5*A && 1561+2*B>=7*C+14*D+35*A && 23*B+140*D>=161+28*C+140*A && 5719+23*B>=28*C+56*D+140*A && C+7*D>=B+7*A && 6*meter==-B+D && B+7*meter>=meter+D && 6*meter+6*D>=7+C+5*A && B+12*meter+5*D>=7+C+5*A && meter+D>=1+A && 29>=A && 203+B+7*meter>=C+2*meter+2*D+5*A && 1561+2*B+14*meter>=7*C+14*meter+14*D+35*A && 23*B+301*meter+140*D>=161+28*C+140*A && 5719+23*B+161*meter>=28*C+56*meter+56*D+140*A && 5+meter+D>=B+7*meter && C+7*meter+7*D>=B+7*meter+7*A ], cost: 1+meter 33: lbl151 -> lbl171 : B'=-8+B, D'=3+D, [ D>=1+B && 5>=B && 6*D>=7+C+5*A && B+5*D>=7+C+5*A && D>=1+A && 29>=A && 203+B>=C+2*D+5*A && 1561+2*B>=7*C+14*D+35*A && 23*B+140*D>=161+28*C+140*A && 5719+23*B>=28*C+56*D+140*A && C+7*D>=B+7*A && 2+B>=1+D && 6+6*D>=7+C+5*A && 7+B+5*D>=7+C+5*A && 1+D>=1+A && 29>=A && 205+B>=2+C+2*D+5*A && 1565+2*B>=14+7*C+14*D+35*A && 186+23*B+140*D>=161+28*C+140*A && 5765+23*B>=56+28*C+56*D+140*A && 6+D>=2+B && 7+C+7*D>=2+B+7*A ], cost: 2 35: lbl151 -> lbl171 : B'=-10+B, D'=2+D, [ B>=D && 6*D>=7+C+5*A && B+5*D>=7+C+5*A && D>=1+A && 29>=A && 203+B>=C+2*D+5*A && 1561+2*B>=7*C+14*D+35*A && 23*B+140*D>=161+28*C+140*A && 5719+23*B>=28*C+56*D+140*A && 5+D>=B && C+7*D>=B+7*A ], cost: 1 34: lbl151 -> [9] : [ D>=1+B && 5>=B && 6*D>=7+C+5*A && B+5*D>=7+C+5*A && D>=1+A && 29>=A && 203+B>=C+2*D+5*A && 1561+2*B>=7*C+14*D+35*A && 23*B+140*D>=161+28*C+140*A && 5719+23*B>=28*C+56*D+140*A && C+7*D>=B+7*A && B>D ], cost: INF 23: start0 -> lbl171 : B'=-10+C, D'=2+A, [ C>=A && 29>=A && C==C && A==A ], cost: 2 24: start0 -> lbl151 : B'=7+C, D'=1+A, [ A>=1+C && C>=6 && 29>=A && C==C && A==A ], cost: 2 25: start0 -> lbl151 : B'=2+C, D'=1+A, [ A>=1+C && 5>=C && 29>=A && C==C && A==A ], cost: 2 Final control flow graph problem, now checking costs for infinitely many models: Start location: start0 26: lbl171 -> lbl151 : B'=-3+B, D'=3+D, [ B>=D && 29>=D && 29>=A && B+5*D>=C+5*A && C+7*D>=24+B+7*A && 1674+7*B>=7*C+19*D+35*A && 2+D>=-9+B && -10+B>=6 && 29>=2+D && 29>=A && B+5*D>=C+5*A && 14+C+7*D>=14+B+7*A && 1604+7*B>=38+7*C+19*D+35*A && 2+B>=2+D ], cost: 2 27: lbl171 -> lbl151 : B'=-8+B, D'=3+D, [ B>=D && 29>=D && 29>=A && B+5*D>=C+5*A && C+7*D>=24+B+7*A && 1674+7*B>=7*C+19*D+35*A && 2+D>=-9+B && 5>=-10+B && 29>=2+D && 29>=A && B+5*D>=C+5*A && 14+C+7*D>=14+B+7*A && 1604+7*B>=38+7*C+19*D+35*A && 2+B>=2+D ], cost: 2 30: lbl171 -> lbl151 : B'=7+B, D'=1+D, [ D>=1+B && B>=6 && 29>=D && 29>=A && B+5*D>=C+5*A && C+7*D>=24+B+7*A && 1674+7*B>=7*C+19*D+35*A && 12+B>=D ], cost: 1 31: lbl171 -> lbl151 : B'=2+B, D'=1+D, [ D>=1+B && 5>=B && 29>=D && 29>=A && B+5*D>=C+5*A && C+7*D>=24+B+7*A && 1674+7*B>=7*C+19*D+35*A && 12+B>=D ], cost: 1 28: lbl171 -> [7] : [ B>=D && 29>=D && 29>=A && B+5*D>=C+5*A && C+7*D>=24+B+7*A && 1674+7*B>=7*C+19*D+35*A && D>B ], cost: INF 29: lbl171 -> [8] : [ B>=D && 29>=D && 29>=A && B+5*D>=C+5*A && C+7*D>=24+B+7*A && 1674+7*B>=7*C+19*D+35*A && D>B ], cost: INF 32: lbl151 -> lbl171 : B'=-10+B+7*meter, D'=2+meter+D, [ D>=1+B && B>=6 && 6*D>=7+C+5*A && B+5*D>=7+C+5*A && D>=1+A && 29>=A && 203+B>=C+2*D+5*A && 1561+2*B>=7*C+14*D+35*A && 23*B+140*D>=161+28*C+140*A && 5719+23*B>=28*C+56*D+140*A && C+7*D>=B+7*A && 6*meter==-B+D && B+7*meter>=meter+D && 6*meter+6*D>=7+C+5*A && B+12*meter+5*D>=7+C+5*A && meter+D>=1+A && 29>=A && 203+B+7*meter>=C+2*meter+2*D+5*A && 1561+2*B+14*meter>=7*C+14*meter+14*D+35*A && 23*B+301*meter+140*D>=161+28*C+140*A && 5719+23*B+161*meter>=28*C+56*meter+56*D+140*A && 5+meter+D>=B+7*meter && C+7*meter+7*D>=B+7*meter+7*A ], cost: 1+meter 33: lbl151 -> lbl171 : B'=-8+B, D'=3+D, [ D>=1+B && 5>=B && 6*D>=7+C+5*A && B+5*D>=7+C+5*A && D>=1+A && 29>=A && 203+B>=C+2*D+5*A && 1561+2*B>=7*C+14*D+35*A && 23*B+140*D>=161+28*C+140*A && 5719+23*B>=28*C+56*D+140*A && C+7*D>=B+7*A && 2+B>=1+D && 6+6*D>=7+C+5*A && 7+B+5*D>=7+C+5*A && 1+D>=1+A && 29>=A && 205+B>=2+C+2*D+5*A && 1565+2*B>=14+7*C+14*D+35*A && 186+23*B+140*D>=161+28*C+140*A && 5765+23*B>=56+28*C+56*D+140*A && 6+D>=2+B && 7+C+7*D>=2+B+7*A ], cost: 2 35: lbl151 -> lbl171 : B'=-10+B, D'=2+D, [ B>=D && 6*D>=7+C+5*A && B+5*D>=7+C+5*A && D>=1+A && 29>=A && 203+B>=C+2*D+5*A && 1561+2*B>=7*C+14*D+35*A && 23*B+140*D>=161+28*C+140*A && 5719+23*B>=28*C+56*D+140*A && 5+D>=B && C+7*D>=B+7*A ], cost: 1 34: lbl151 -> [9] : [ D>=1+B && 5>=B && 6*D>=7+C+5*A && B+5*D>=7+C+5*A && D>=1+A && 29>=A && 203+B>=C+2*D+5*A && 1561+2*B>=7*C+14*D+35*A && 23*B+140*D>=161+28*C+140*A && 5719+23*B>=28*C+56*D+140*A && C+7*D>=B+7*A && B>D ], cost: INF 23: start0 -> lbl171 : B'=-10+C, D'=2+A, [ C>=A && 29>=A && C==C && A==A ], cost: 2 24: start0 -> lbl151 : B'=7+C, D'=1+A, [ A>=1+C && C>=6 && 29>=A && C==C && A==A ], cost: 2 25: start0 -> lbl151 : B'=2+C, D'=1+A, [ A>=1+C && 5>=C && 29>=A && C==C && A==A ], cost: 2 This is only a partial result (probably due to a timeout), trying to find max complexity Removed transitions with const cost Start location: start0 26: lbl171 -> lbl151 : B'=-3+B, D'=3+D, [ B>=D && 29>=D && 29>=A && B+5*D>=C+5*A && C+7*D>=24+B+7*A && 1674+7*B>=7*C+19*D+35*A && 2+D>=-9+B && -10+B>=6 && 29>=2+D && 29>=A && B+5*D>=C+5*A && 14+C+7*D>=14+B+7*A && 1604+7*B>=38+7*C+19*D+35*A && 2+B>=2+D ], cost: 2 27: lbl171 -> lbl151 : B'=-8+B, D'=3+D, [ B>=D && 29>=D && 29>=A && B+5*D>=C+5*A && C+7*D>=24+B+7*A && 1674+7*B>=7*C+19*D+35*A && 2+D>=-9+B && 5>=-10+B && 29>=2+D && 29>=A && B+5*D>=C+5*A && 14+C+7*D>=14+B+7*A && 1604+7*B>=38+7*C+19*D+35*A && 2+B>=2+D ], cost: 2 30: lbl171 -> lbl151 : B'=7+B, D'=1+D, [ D>=1+B && B>=6 && 29>=D && 29>=A && B+5*D>=C+5*A && C+7*D>=24+B+7*A && 1674+7*B>=7*C+19*D+35*A && 12+B>=D ], cost: 1 31: lbl171 -> lbl151 : B'=2+B, D'=1+D, [ D>=1+B && 5>=B && 29>=D && 29>=A && B+5*D>=C+5*A && C+7*D>=24+B+7*A && 1674+7*B>=7*C+19*D+35*A && 12+B>=D ], cost: 1 28: lbl171 -> [7] : [ B>=D && 29>=D && 29>=A && B+5*D>=C+5*A && C+7*D>=24+B+7*A && 1674+7*B>=7*C+19*D+35*A && D>B ], cost: INF 29: lbl171 -> [8] : [ B>=D && 29>=D && 29>=A && B+5*D>=C+5*A && C+7*D>=24+B+7*A && 1674+7*B>=7*C+19*D+35*A && D>B ], cost: INF 32: lbl151 -> lbl171 : B'=-10+B+7*meter, D'=2+meter+D, [ D>=1+B && B>=6 && 6*D>=7+C+5*A && B+5*D>=7+C+5*A && D>=1+A && 29>=A && 203+B>=C+2*D+5*A && 1561+2*B>=7*C+14*D+35*A && 23*B+140*D>=161+28*C+140*A && 5719+23*B>=28*C+56*D+140*A && C+7*D>=B+7*A && 6*meter==-B+D && B+7*meter>=meter+D && 6*meter+6*D>=7+C+5*A && B+12*meter+5*D>=7+C+5*A && meter+D>=1+A && 29>=A && 203+B+7*meter>=C+2*meter+2*D+5*A && 1561+2*B+14*meter>=7*C+14*meter+14*D+35*A && 23*B+301*meter+140*D>=161+28*C+140*A && 5719+23*B+161*meter>=28*C+56*meter+56*D+140*A && 5+meter+D>=B+7*meter && C+7*meter+7*D>=B+7*meter+7*A ], cost: 1+meter 34: lbl151 -> [9] : [ D>=1+B && 5>=B && 6*D>=7+C+5*A && B+5*D>=7+C+5*A && D>=1+A && 29>=A && 203+B>=C+2*D+5*A && 1561+2*B>=7*C+14*D+35*A && 23*B+140*D>=161+28*C+140*A && 5719+23*B>=28*C+56*D+140*A && C+7*D>=B+7*A && B>D ], cost: INF 23: start0 -> lbl171 : B'=-10+C, D'=2+A, [ C>=A && 29>=A && C==C && A==A ], cost: 2 Performed chaining from the start location: Start location: start0 32: lbl151 -> lbl171 : B'=-10+B+7*meter, D'=2+meter+D, [ D>=1+B && B>=6 && 6*D>=7+C+5*A && B+5*D>=7+C+5*A && D>=1+A && 29>=A && 203+B>=C+2*D+5*A && 1561+2*B>=7*C+14*D+35*A && 23*B+140*D>=161+28*C+140*A && 5719+23*B>=28*C+56*D+140*A && C+7*D>=B+7*A && 6*meter==-B+D && B+7*meter>=meter+D && 6*meter+6*D>=7+C+5*A && B+12*meter+5*D>=7+C+5*A && meter+D>=1+A && 29>=A && 203+B+7*meter>=C+2*meter+2*D+5*A && 1561+2*B+14*meter>=7*C+14*meter+14*D+35*A && 23*B+301*meter+140*D>=161+28*C+140*A && 5719+23*B+161*meter>=28*C+56*meter+56*D+140*A && 5+meter+D>=B+7*meter && C+7*meter+7*D>=B+7*meter+7*A ], cost: 1+meter 34: lbl151 -> [9] : [ D>=1+B && 5>=B && 6*D>=7+C+5*A && B+5*D>=7+C+5*A && D>=1+A && 29>=A && 203+B>=C+2*D+5*A && 1561+2*B>=7*C+14*D+35*A && 23*B+140*D>=161+28*C+140*A && 5719+23*B>=28*C+56*D+140*A && C+7*D>=B+7*A && B>D ], cost: INF 36: start0 -> lbl151 : B'=-13+C, D'=5+A, [ C>=A && 29>=A && C==C && A==A && -10+C>=2+A && 29>=2+A && 29>=A && C+5*A>=C+5*A && 14+C+7*A>=14+C+7*A && 1604+7*C>=38+7*C+54*A && 4+A>=-19+C && -20+C>=6 && 29>=4+A && 29>=A && C+5*A>=C+5*A && 28+C+7*A>=4+C+7*A && 1534+7*C>=76+7*C+54*A && -8+C>=4+A ], cost: 4 37: start0 -> lbl151 : B'=-18+C, D'=5+A, [ C>=A && 29>=A && C==C && A==A && -10+C>=2+A && 29>=2+A && 29>=A && C+5*A>=C+5*A && 14+C+7*A>=14+C+7*A && 1604+7*C>=38+7*C+54*A && 4+A>=-19+C && 5>=-20+C && 29>=4+A && 29>=A && C+5*A>=C+5*A && 28+C+7*A>=4+C+7*A && 1534+7*C>=76+7*C+54*A && -8+C>=4+A ], cost: 4 38: start0 -> lbl151 : B'=-3+C, D'=3+A, [ C>=A && 29>=A && C==C && A==A && 2+A>=-9+C && -10+C>=6 && 29>=2+A && 29>=A && C+5*A>=C+5*A && 14+C+7*A>=14+C+7*A && 1604+7*C>=38+7*C+54*A && 2+C>=2+A ], cost: 3 39: start0 -> lbl151 : B'=-8+C, D'=3+A, [ C>=A && 29>=A && C==C && A==A && 2+A>=-9+C && 5>=-10+C && 29>=2+A && 29>=A && C+5*A>=C+5*A && 14+C+7*A>=14+C+7*A && 1604+7*C>=38+7*C+54*A && 2+C>=2+A ], cost: 3 Performed chaining from the start location: Start location: start0 40: start0 -> lbl171 : B'=-23+C+7*meter, D'=7+meter+A, [ C>=A && 29>=A && C==C && A==A && -10+C>=2+A && 29>=2+A && 29>=A && C+5*A>=C+5*A && 14+C+7*A>=14+C+7*A && 1604+7*C>=38+7*C+54*A && 4+A>=-19+C && -20+C>=6 && 29>=4+A && 29>=A && C+5*A>=C+5*A && 28+C+7*A>=4+C+7*A && 1534+7*C>=76+7*C+54*A && -8+C>=4+A && 5+A>=-12+C && -13+C>=6 && 30+6*A>=7+C+5*A && 12+C+5*A>=7+C+5*A && 5+A>=1+A && 29>=A && 190+C>=10+C+7*A && 1535+2*C>=70+7*C+49*A && 401+23*C+140*A>=161+28*C+140*A && 5420+23*C>=280+28*C+196*A && 35+C+7*A>=-13+C+7*A && 6*meter==18-C+A && -13+C+7*meter>=5+meter+A && 30+6*meter+6*A>=7+C+5*A && 12+C+12*meter+5*A>=7+C+5*A && 5+meter+A>=1+A && 29>=A && 190+C+7*meter>=10+C+2*meter+7*A && 1535+2*C+14*meter>=70+7*C+14*meter+49*A && 401+23*C+301*meter+140*A>=161+28*C+140*A && 5420+23*C+161*meter>=280+28*C+56*meter+196*A && 10+meter+A>=-13+C+7*meter && 35+C+7*meter+7*A>=-13+C+7*meter+7*A ], cost: 5+meter Found configuration with infinitely models for cost: 5+meter and guard: C>=A && 29>=A && C==C && A==A && -10+C>=2+A && 29>=2+A && 29>=A && C+5*A>=C+5*A && 14+C+7*A>=14+C+7*A && 1604+7*C>=38+7*C+54*A && 4+A>=-19+C && -20+C>=6 && 29>=4+A && 29>=A && C+5*A>=C+5*A && 28+C+7*A>=4+C+7*A && 1534+7*C>=76+7*C+54*A && -8+C>=4+A && 5+A>=-12+C && -13+C>=6 && 30+6*A>=7+C+5*A && 12+C+5*A>=7+C+5*A && 5+A>=1+A && 29>=A && 190+C>=10+C+7*A && 1535+2*C>=70+7*C+49*A && 401+23*C+140*A>=161+28*C+140*A && 5420+23*C>=280+28*C+196*A && 35+C+7*A>=-13+C+7*A && 6*meter==18-C+A && -13+C+7*meter>=5+meter+A && 30+6*meter+6*A>=7+C+5*A && 12+C+12*meter+5*A>=7+C+5*A && 5+meter+A>=1+A && 29>=A && 190+C+7*meter>=10+C+2*meter+7*A && 1535+2*C+14*meter>=70+7*C+14*meter+49*A && 401+23*C+301*meter+140*A>=161+28*C+140*A && 5420+23*C+161*meter>=280+28*C+56*meter+196*A && 10+meter+A>=-13+C+7*meter && 35+C+7*meter+7*A>=-13+C+7*meter+7*A: C: Both, meter: Const, A: Const Found new complexity const, because: Found infinity configuration. Performed chaining from the start location: Start location: start0 The final runtime is determined by this resulting transition: Final Guard: C>=A && 29>=A && C==C && A==A && -10+C>=2+A && 29>=2+A && 29>=A && C+5*A>=C+5*A && 14+C+7*A>=14+C+7*A && 1604+7*C>=38+7*C+54*A && 4+A>=-19+C && -20+C>=6 && 29>=4+A && 29>=A && C+5*A>=C+5*A && 28+C+7*A>=4+C+7*A && 1534+7*C>=76+7*C+54*A && -8+C>=4+A && 5+A>=-12+C && -13+C>=6 && 30+6*A>=7+C+5*A && 12+C+5*A>=7+C+5*A && 5+A>=1+A && 29>=A && 190+C>=10+C+7*A && 1535+2*C>=70+7*C+49*A && 401+23*C+140*A>=161+28*C+140*A && 5420+23*C>=280+28*C+196*A && 35+C+7*A>=-13+C+7*A && 6*meter==18-C+A && -13+C+7*meter>=5+meter+A && 30+6*meter+6*A>=7+C+5*A && 12+C+12*meter+5*A>=7+C+5*A && 5+meter+A>=1+A && 29>=A && 190+C+7*meter>=10+C+2*meter+7*A && 1535+2*C+14*meter>=70+7*C+14*meter+49*A && 401+23*C+301*meter+140*A>=161+28*C+140*A && 5420+23*C+161*meter>=280+28*C+56*meter+196*A && 10+meter+A>=-13+C+7*meter && 35+C+7*meter+7*A>=-13+C+7*meter+7*A Final Cost: 6 Obtained the following complexity w.r.t. the length of the input n: Complexity class: const Complexity value: 0 WORST_CASE(Omega(1),?)