Trying to load file: main.koat Initial Control flow graph problem: Start location: start 0: eval -> eval : A'=free, [ A>=0 && B>=0 && B>=1+A && B+A>=2*free_2 && 3*free_2>=1+B+A && free>=1+free_2 && B+A>=2*free_1 && 3*free_1>=1+B+A && 1+free_1>=free ], cost: 1 1: eval -> eval : B'=free_3, [ A>=0 && B>=0 && B>=1+A && B+A>=2*free_5 && 3*free_5>=1+B+A && free_3>=free_5 && B+A>=2*free_4 && 3*free_4>=1+B+A && free_4>=free_3 ], cost: 1 2: start -> eval : [], cost: 1 Eliminating 2 self-loops for location eval Removing the self-loops: 0 1. Adding an epsilon transition (to model nonexecution of the loops): 5. Removed all Self-loops using metering functions (where possible): Start location: start 3: eval -> [2] : A'=free, [ A>=0 && B>=0 && B>=1+A && B+A>=2*free_2 && 3*free_2>=1+B+A && free>=1+free_2 && B+A>=2*free_1 && 3*free_1>=1+B+A && 1+free_1>=free ], cost: 1 4: eval -> [2] : B'=free_3, [ A>=0 && B>=0 && B>=1+A && B+A>=2*free_5 && 3*free_5>=1+B+A && free_3>=free_5 && B+A>=2*free_4 && 3*free_4>=1+B+A && free_4>=free_3 ], cost: 1 5: eval -> [2] : [], cost: 0 2: start -> eval : [], cost: 1 Applied chaining over branches and pruning: Start location: start Final control flow graph problem, now checking costs for infinitely many models: Start location: start Computing complexity for remaining 0 transitions. The final runtime is determined by this resulting transition: Final Guard: Final Cost: 1 Obtained the following complexity w.r.t. the length of the input n: Complexity class: const Complexity value: 0 WORST_CASE(Omega(1),?)