YES(?, 255*a + 120*a^2 + 139) Initial complexity problem: 1: T: (1, 1) evalsipmabubblestart(a, b) -> evalsipmabubbleentryin(a, b) (?, 1) evalsipmabubbleentryin(a, b) -> evalsipmabubblebb6in(a, b) (?, 1) evalsipmabubblebb6in(a, b) -> evalsipmabubblebb4in(a, 0) [ a >= 0 ] (?, 1) evalsipmabubblebb6in(a, b) -> evalsipmabubblereturnin(a, b) [ 0 >= a + 1 ] (?, 1) evalsipmabubblebb4in(a, b) -> evalsipmabubblebb1in(a, b) [ a >= b + 1 ] (?, 1) evalsipmabubblebb4in(a, b) -> evalsipmabubblebb5in(a, b) [ b >= a ] (?, 1) evalsipmabubblebb1in(a, b) -> evalsipmabubblebb2in(a, b) [ c >= d + 1 ] (?, 1) evalsipmabubblebb1in(a, b) -> evalsipmabubblebb3in(a, b) [ d >= c ] (?, 1) evalsipmabubblebb2in(a, b) -> evalsipmabubblebb3in(a, b) (?, 1) evalsipmabubblebb3in(a, b) -> evalsipmabubblebb4in(a, b + 1) (?, 1) evalsipmabubblebb5in(a, b) -> evalsipmabubblebb6in(a - 1, b) (?, 1) evalsipmabubblereturnin(a, b) -> evalsipmabubblestop(a, b) start location: evalsipmabubblestart leaf cost: 0 Repeatedly removing leaves of the complexity graph in problem 1 produces the following problem: 2: T: (1, 1) evalsipmabubblestart(a, b) -> evalsipmabubbleentryin(a, b) (?, 1) evalsipmabubbleentryin(a, b) -> evalsipmabubblebb6in(a, b) (?, 1) evalsipmabubblebb6in(a, b) -> evalsipmabubblebb4in(a, 0) [ a >= 0 ] (?, 1) evalsipmabubblebb4in(a, b) -> evalsipmabubblebb1in(a, b) [ a >= b + 1 ] (?, 1) evalsipmabubblebb4in(a, b) -> evalsipmabubblebb5in(a, b) [ b >= a ] (?, 1) evalsipmabubblebb1in(a, b) -> evalsipmabubblebb2in(a, b) [ c >= d + 1 ] (?, 1) evalsipmabubblebb1in(a, b) -> evalsipmabubblebb3in(a, b) [ d >= c ] (?, 1) evalsipmabubblebb2in(a, b) -> evalsipmabubblebb3in(a, b) (?, 1) evalsipmabubblebb3in(a, b) -> evalsipmabubblebb4in(a, b + 1) (?, 1) evalsipmabubblebb5in(a, b) -> evalsipmabubblebb6in(a - 1, b) start location: evalsipmabubblestart leaf cost: 2 Repeatedly propagating knowledge in problem 2 produces the following problem: 3: T: (1, 1) evalsipmabubblestart(a, b) -> evalsipmabubbleentryin(a, b) (1, 1) evalsipmabubbleentryin(a, b) -> evalsipmabubblebb6in(a, b) (?, 1) evalsipmabubblebb6in(a, b) -> evalsipmabubblebb4in(a, 0) [ a >= 0 ] (?, 1) evalsipmabubblebb4in(a, b) -> evalsipmabubblebb1in(a, b) [ a >= b + 1 ] (?, 1) evalsipmabubblebb4in(a, b) -> evalsipmabubblebb5in(a, b) [ b >= a ] (?, 1) evalsipmabubblebb1in(a, b) -> evalsipmabubblebb2in(a, b) [ c >= d + 1 ] (?, 1) evalsipmabubblebb1in(a, b) -> evalsipmabubblebb3in(a, b) [ d >= c ] (?, 1) evalsipmabubblebb2in(a, b) -> evalsipmabubblebb3in(a, b) (?, 1) evalsipmabubblebb3in(a, b) -> evalsipmabubblebb4in(a, b + 1) (?, 1) evalsipmabubblebb5in(a, b) -> evalsipmabubblebb6in(a - 1, b) start location: evalsipmabubblestart leaf cost: 2 Separating problem 3 produces the isolated subproblem 10001: T: (1, 0) inner_10000_start_sep(a, b) -> evalsipmabubblebb4in(a, 0) (?, 1) evalsipmabubblebb3in(a, b) -> evalsipmabubblebb4in(a, b + 1) (?, 1) evalsipmabubblebb2in(a, b) -> evalsipmabubblebb3in(a, b) (?, 1) evalsipmabubblebb1in(a, b) -> evalsipmabubblebb3in(a, b) [ d >= c ] (?, 1) evalsipmabubblebb1in(a, b) -> evalsipmabubblebb2in(a, b) [ c >= d + 1 ] (?, 1) evalsipmabubblebb4in(a, b) -> evalsipmabubblebb1in(a, b) [ a >= b + 1 ] start location: inner_10000_start_sep leaf cost: 0 === begin of proof for isolated subproblem 10001 === Initial complexity problem: 10001: T: (1, 0) inner_10000_start_sep(a, b) -> evalsipmabubblebb4in(a, 0) (?, 1) evalsipmabubblebb3in(a, b) -> evalsipmabubblebb4in(a, b + 1) (?, 1) evalsipmabubblebb2in(a, b) -> evalsipmabubblebb3in(a, b) (?, 1) evalsipmabubblebb1in(a, b) -> evalsipmabubblebb3in(a, b) [ d >= c ] (?, 1) evalsipmabubblebb1in(a, b) -> evalsipmabubblebb2in(a, b) [ c >= d + 1 ] (?, 1) evalsipmabubblebb4in(a, b) -> evalsipmabubblebb1in(a, b) [ a >= b + 1 ] start location: inner_10000_start_sep leaf cost: 0 A polynomial rank function with Pol(inner_10000_start_sep) = 4*V_1 Pol(evalsipmabubblebb4in) = 4*V_1 - 4*V_2 Pol(evalsipmabubblebb3in) = 4*V_1 - 4*V_2 - 3 Pol(evalsipmabubblebb2in) = 4*V_1 - 4*V_2 - 2 Pol(evalsipmabubblebb1in) = 4*V_1 - 4*V_2 - 1 orients all transitions weakly and the transition evalsipmabubblebb4in(a, b) -> evalsipmabubblebb1in(a, b) [ a >= b + 1 ] strictly and produces the following problem: 10002: T: (1, 0) inner_10000_start_sep(a, b) -> evalsipmabubblebb4in(a, 0) (?, 1) evalsipmabubblebb3in(a, b) -> evalsipmabubblebb4in(a, b + 1) (?, 1) evalsipmabubblebb2in(a, b) -> evalsipmabubblebb3in(a, b) (?, 1) evalsipmabubblebb1in(a, b) -> evalsipmabubblebb3in(a, b) [ d >= c ] (?, 1) evalsipmabubblebb1in(a, b) -> evalsipmabubblebb2in(a, b) [ c >= d + 1 ] (4*a, 1) evalsipmabubblebb4in(a, b) -> evalsipmabubblebb1in(a, b) [ a >= b + 1 ] start location: inner_10000_start_sep leaf cost: 0 Repeatedly propagating knowledge in problem 10002 produces the following problem: 10003: T: (1, 0) inner_10000_start_sep(a, b) -> evalsipmabubblebb4in(a, 0) (8*a, 1) evalsipmabubblebb3in(a, b) -> evalsipmabubblebb4in(a, b + 1) (4*a, 1) evalsipmabubblebb2in(a, b) -> evalsipmabubblebb3in(a, b) (4*a, 1) evalsipmabubblebb1in(a, b) -> evalsipmabubblebb3in(a, b) [ d >= c ] (4*a, 1) evalsipmabubblebb1in(a, b) -> evalsipmabubblebb2in(a, b) [ c >= d + 1 ] (4*a, 1) evalsipmabubblebb4in(a, b) -> evalsipmabubblebb1in(a, b) [ a >= b + 1 ] start location: inner_10000_start_sep leaf cost: 0 === end of proof for isolated subproblem 10001 === Applying the information from the isolated subproblem 10001 to problem 3 produces the following problem: 4: T: (?, 0) inner_10000_in_sep(a, b) -> inner_10000_out_sep(a, b) (?, 24*a) inner_10000_in_sep(a, b) -> inner_10000_compl_sep(a, b) (?, 0) inner_10000_compl_sep(a, b) -> inner_10000_out_sep(a, b_sep) [ a >= 0 /\ b_sep >= 0 /\ b_sep <= 8*a ] (?, 0) inner_10000_compl_sep(a, b) -> inner_10000_out_sep(a, b_sep) [ a >= 0 /\ b_sep < 0 /\ -b_sep <= 8*a ] (?, 0) inner_10000_compl_sep(a, b) -> inner_10000_out_sep(a, b_sep) [ a < 0 /\ b_sep >= 0 /\ b_sep <= -8*a ] (?, 0) inner_10000_compl_sep(a, b) -> inner_10000_out_sep(a, b_sep) [ a < 0 /\ b_sep < 0 /\ -b_sep <= -8*a ] (?, 1) inner_10000_out_sep(a, b) -> evalsipmabubblebb5in(a, b) [ b >= a ] (?, 1) evalsipmabubblebb6in(a, b) -> inner_10000_in_sep(a, 0) [ a >= 0 ] (?, 1) evalsipmabubblebb5in(a, b) -> evalsipmabubblebb6in(a - 1, b) (1, 1) evalsipmabubbleentryin(a, b) -> evalsipmabubblebb6in(a, b) (1, 1) evalsipmabubblestart(a, b) -> evalsipmabubbleentryin(a, b) start location: evalsipmabubblestart leaf cost: 2 Applied AI with 'oct' on problem 4 to obtain the following invariants: For symbol evalsipmabubblebb5in: X_2 >= 0 /\ X_1 + X_2 >= 0 /\ -X_1 + X_2 >= 0 /\ X_1 >= 0 For symbol inner_10000_compl_sep: -X_2 >= 0 /\ X_1 - X_2 >= 0 /\ X_2 >= 0 /\ X_1 + X_2 >= 0 /\ X_1 >= 0 For symbol inner_10000_in_sep: -X_2 >= 0 /\ X_1 - X_2 >= 0 /\ X_2 >= 0 /\ X_1 + X_2 >= 0 /\ X_1 >= 0 For symbol inner_10000_out_sep: X_1 >= 0 This yielded the following problem: 5: T: (1, 1) evalsipmabubblestart(a, b) -> evalsipmabubbleentryin(a, b) (1, 1) evalsipmabubbleentryin(a, b) -> evalsipmabubblebb6in(a, b) (?, 1) evalsipmabubblebb5in(a, b) -> evalsipmabubblebb6in(a - 1, b) [ b >= 0 /\ a + b >= 0 /\ -a + b >= 0 /\ a >= 0 ] (?, 1) evalsipmabubblebb6in(a, b) -> inner_10000_in_sep(a, 0) [ a >= 0 ] (?, 1) inner_10000_out_sep(a, b) -> evalsipmabubblebb5in(a, b) [ a >= 0 /\ b >= a ] (?, 0) inner_10000_compl_sep(a, b) -> inner_10000_out_sep(a, b_sep) [ -b >= 0 /\ a - b >= 0 /\ b >= 0 /\ a + b >= 0 /\ a >= 0 /\ a < 0 /\ b_sep < 0 /\ -b_sep <= -8*a ] (?, 0) inner_10000_compl_sep(a, b) -> inner_10000_out_sep(a, b_sep) [ -b >= 0 /\ a - b >= 0 /\ b >= 0 /\ a + b >= 0 /\ a >= 0 /\ a < 0 /\ b_sep >= 0 /\ b_sep <= -8*a ] (?, 0) inner_10000_compl_sep(a, b) -> inner_10000_out_sep(a, b_sep) [ -b >= 0 /\ a - b >= 0 /\ b >= 0 /\ a + b >= 0 /\ a >= 0 /\ b_sep < 0 /\ -b_sep <= 8*a ] (?, 0) inner_10000_compl_sep(a, b) -> inner_10000_out_sep(a, b_sep) [ -b >= 0 /\ a - b >= 0 /\ b >= 0 /\ a + b >= 0 /\ a >= 0 /\ b_sep >= 0 /\ b_sep <= 8*a ] (?, 24*a) inner_10000_in_sep(a, b) -> inner_10000_compl_sep(a, b) [ -b >= 0 /\ a - b >= 0 /\ b >= 0 /\ a + b >= 0 /\ a >= 0 ] (?, 0) inner_10000_in_sep(a, b) -> inner_10000_out_sep(a, b) [ -b >= 0 /\ a - b >= 0 /\ b >= 0 /\ a + b >= 0 /\ a >= 0 ] start location: evalsipmabubblestart leaf cost: 2 Testing for unsatisfiable constraints removes the following transitions from problem 5: inner_10000_compl_sep(a, b) -> inner_10000_out_sep(a, b_sep) [ -b >= 0 /\ a - b >= 0 /\ b >= 0 /\ a + b >= 0 /\ a >= 0 /\ a < 0 /\ b_sep < 0 /\ -b_sep <= -8*a ] inner_10000_compl_sep(a, b) -> inner_10000_out_sep(a, b_sep) [ -b >= 0 /\ a - b >= 0 /\ b >= 0 /\ a + b >= 0 /\ a >= 0 /\ a < 0 /\ b_sep >= 0 /\ b_sep <= -8*a ] We thus obtain the following problem: 6: T: (1, 1) evalsipmabubblestart(a, b) -> evalsipmabubbleentryin(a, b) (1, 1) evalsipmabubbleentryin(a, b) -> evalsipmabubblebb6in(a, b) (?, 1) evalsipmabubblebb5in(a, b) -> evalsipmabubblebb6in(a - 1, b) [ b >= 0 /\ a + b >= 0 /\ -a + b >= 0 /\ a >= 0 ] (?, 1) evalsipmabubblebb6in(a, b) -> inner_10000_in_sep(a, 0) [ a >= 0 ] (?, 1) inner_10000_out_sep(a, b) -> evalsipmabubblebb5in(a, b) [ a >= 0 /\ b >= a ] (?, 0) inner_10000_compl_sep(a, b) -> inner_10000_out_sep(a, b_sep) [ -b >= 0 /\ a - b >= 0 /\ b >= 0 /\ a + b >= 0 /\ a >= 0 /\ b_sep < 0 /\ -b_sep <= 8*a ] (?, 0) inner_10000_compl_sep(a, b) -> inner_10000_out_sep(a, b_sep) [ -b >= 0 /\ a - b >= 0 /\ b >= 0 /\ a + b >= 0 /\ a >= 0 /\ b_sep >= 0 /\ b_sep <= 8*a ] (?, 24*a) inner_10000_in_sep(a, b) -> inner_10000_compl_sep(a, b) [ -b >= 0 /\ a - b >= 0 /\ b >= 0 /\ a + b >= 0 /\ a >= 0 ] (?, 0) inner_10000_in_sep(a, b) -> inner_10000_out_sep(a, b) [ -b >= 0 /\ a - b >= 0 /\ b >= 0 /\ a + b >= 0 /\ a >= 0 ] start location: evalsipmabubblestart leaf cost: 2 A polynomial rank function with Pol(evalsipmabubblestart) = 5*V_1 + 5 Pol(evalsipmabubbleentryin) = 5*V_1 + 5 Pol(evalsipmabubblebb6in) = 5*V_1 + 5 Pol(evalsipmabubblebb5in) = 5*V_1 + 1 Pol(inner_10000_in_sep) = 5*V_1 + 4 Pol(inner_10000_out_sep) = 5*V_1 + 2 Pol(inner_10000_compl_sep) = 5*V_1 + 3 orients all transitions weakly and the transitions inner_10000_out_sep(a, b) -> evalsipmabubblebb5in(a, b) [ a >= 0 /\ b >= a ] inner_10000_in_sep(a, b) -> inner_10000_out_sep(a, b) [ -b >= 0 /\ a - b >= 0 /\ b >= 0 /\ a + b >= 0 /\ a >= 0 ] inner_10000_in_sep(a, b) -> inner_10000_compl_sep(a, b) [ -b >= 0 /\ a - b >= 0 /\ b >= 0 /\ a + b >= 0 /\ a >= 0 ] inner_10000_compl_sep(a, b) -> inner_10000_out_sep(a, b_sep) [ -b >= 0 /\ a - b >= 0 /\ b >= 0 /\ a + b >= 0 /\ a >= 0 /\ b_sep < 0 /\ -b_sep <= 8*a ] inner_10000_compl_sep(a, b) -> inner_10000_out_sep(a, b_sep) [ -b >= 0 /\ a - b >= 0 /\ b >= 0 /\ a + b >= 0 /\ a >= 0 /\ b_sep >= 0 /\ b_sep <= 8*a ] evalsipmabubblebb6in(a, b) -> inner_10000_in_sep(a, 0) [ a >= 0 ] evalsipmabubblebb5in(a, b) -> evalsipmabubblebb6in(a - 1, b) [ b >= 0 /\ a + b >= 0 /\ -a + b >= 0 /\ a >= 0 ] strictly and produces the following problem: 7: T: (1, 1) evalsipmabubblestart(a, b) -> evalsipmabubbleentryin(a, b) (1, 1) evalsipmabubbleentryin(a, b) -> evalsipmabubblebb6in(a, b) (5*a + 5, 1) evalsipmabubblebb5in(a, b) -> evalsipmabubblebb6in(a - 1, b) [ b >= 0 /\ a + b >= 0 /\ -a + b >= 0 /\ a >= 0 ] (5*a + 5, 1) evalsipmabubblebb6in(a, b) -> inner_10000_in_sep(a, 0) [ a >= 0 ] (5*a + 5, 1) inner_10000_out_sep(a, b) -> evalsipmabubblebb5in(a, b) [ a >= 0 /\ b >= a ] (5*a + 5, 0) inner_10000_compl_sep(a, b) -> inner_10000_out_sep(a, b_sep) [ -b >= 0 /\ a - b >= 0 /\ b >= 0 /\ a + b >= 0 /\ a >= 0 /\ b_sep < 0 /\ -b_sep <= 8*a ] (5*a + 5, 0) inner_10000_compl_sep(a, b) -> inner_10000_out_sep(a, b_sep) [ -b >= 0 /\ a - b >= 0 /\ b >= 0 /\ a + b >= 0 /\ a >= 0 /\ b_sep >= 0 /\ b_sep <= 8*a ] (5*a + 5, 24*a) inner_10000_in_sep(a, b) -> inner_10000_compl_sep(a, b) [ -b >= 0 /\ a - b >= 0 /\ b >= 0 /\ a + b >= 0 /\ a >= 0 ] (5*a + 5, 0) inner_10000_in_sep(a, b) -> inner_10000_out_sep(a, b) [ -b >= 0 /\ a - b >= 0 /\ b >= 0 /\ a + b >= 0 /\ a >= 0 ] start location: evalsipmabubblestart leaf cost: 2 Complexity upper bound 255*a + 120*a^2 + 139 Time: 0.529 sec (SMT: 0.504 sec)