YES(?, 126*a + 24*a^2 + 107) Initial complexity problem: 1: T: (1, 1) evalloopsstart(a, b) -> evalloopsentryin(a, b) (?, 1) evalloopsentryin(a, b) -> evalloopsbb6in(a, b) [ a >= 0 ] (?, 1) evalloopsentryin(a, b) -> evalloopsreturnin(a, b) [ 0 >= a + 1 ] (?, 1) evalloopsbb6in(a, b) -> evalloopsbb1in(a, b) [ a >= 0 ] (?, 1) evalloopsbb6in(a, b) -> evalloopsreturnin(a, b) [ 0 >= a + 1 ] (?, 1) evalloopsbb1in(a, b) -> evalloopsbb4in(a, 1) [ a >= 2 ] (?, 1) evalloopsbb1in(a, b) -> evalloopsbb5in(a, c) [ 1 >= a ] (?, 1) evalloopsbb4in(a, b) -> evalloopsbb3in(a, b) [ a >= b + 1 ] (?, 1) evalloopsbb4in(a, b) -> evalloopsbb5in(a, b) [ b >= a ] (?, 1) evalloopsbb3in(a, b) -> evalloopsbb4in(a, 2*b) (?, 1) evalloopsbb5in(a, b) -> evalloopsbb6in(a - 1, b) (?, 1) evalloopsreturnin(a, b) -> evalloopsstop(a, b) start location: evalloopsstart leaf cost: 0 Repeatedly removing leaves of the complexity graph in problem 1 produces the following problem: 2: T: (1, 1) evalloopsstart(a, b) -> evalloopsentryin(a, b) (?, 1) evalloopsentryin(a, b) -> evalloopsbb6in(a, b) [ a >= 0 ] (?, 1) evalloopsbb6in(a, b) -> evalloopsbb1in(a, b) [ a >= 0 ] (?, 1) evalloopsbb1in(a, b) -> evalloopsbb4in(a, 1) [ a >= 2 ] (?, 1) evalloopsbb1in(a, b) -> evalloopsbb5in(a, c) [ 1 >= a ] (?, 1) evalloopsbb4in(a, b) -> evalloopsbb3in(a, b) [ a >= b + 1 ] (?, 1) evalloopsbb4in(a, b) -> evalloopsbb5in(a, b) [ b >= a ] (?, 1) evalloopsbb3in(a, b) -> evalloopsbb4in(a, 2*b) (?, 1) evalloopsbb5in(a, b) -> evalloopsbb6in(a - 1, b) start location: evalloopsstart leaf cost: 3 Repeatedly propagating knowledge in problem 2 produces the following problem: 3: T: (1, 1) evalloopsstart(a, b) -> evalloopsentryin(a, b) (1, 1) evalloopsentryin(a, b) -> evalloopsbb6in(a, b) [ a >= 0 ] (?, 1) evalloopsbb6in(a, b) -> evalloopsbb1in(a, b) [ a >= 0 ] (?, 1) evalloopsbb1in(a, b) -> evalloopsbb4in(a, 1) [ a >= 2 ] (?, 1) evalloopsbb1in(a, b) -> evalloopsbb5in(a, c) [ 1 >= a ] (?, 1) evalloopsbb4in(a, b) -> evalloopsbb3in(a, b) [ a >= b + 1 ] (?, 1) evalloopsbb4in(a, b) -> evalloopsbb5in(a, b) [ b >= a ] (?, 1) evalloopsbb3in(a, b) -> evalloopsbb4in(a, 2*b) (?, 1) evalloopsbb5in(a, b) -> evalloopsbb6in(a - 1, b) start location: evalloopsstart leaf cost: 3 Separating problem 3 produces the isolated subproblem 10001: T: (1, 0) inner_10000_start_sep(a, b) -> evalloopsbb4in(a, 1) (?, 1) evalloopsbb3in(a, b) -> evalloopsbb4in(a, 2*b) (?, 1) evalloopsbb4in(a, b) -> evalloopsbb3in(a, b) [ a >= b + 1 ] start location: inner_10000_start_sep leaf cost: 0 === begin of proof for isolated subproblem 10001 === Initial complexity problem: 10001: T: (1, 0) inner_10000_start_sep(a, b) -> evalloopsbb4in(a, 1) (?, 1) evalloopsbb3in(a, b) -> evalloopsbb4in(a, 2*b) (?, 1) evalloopsbb4in(a, b) -> evalloopsbb3in(a, b) [ a >= b + 1 ] start location: inner_10000_start_sep leaf cost: 0 Applied AI with 'oct' on problem 20001 to obtain the following invariants: For symbol evalloopsbb3in: X_1 - X_2 - 1 >= 0 /\ X_2 - 1 >= 0 /\ X_1 + X_2 - 3 >= 0 /\ X_1 - 2 >= 0 For symbol evalloopsbb4in: X_2 - 1 >= 0 This yielded the following problem: 10002: T: (?, 1) evalloopsbb4in(a, b) -> evalloopsbb3in(a, b) [ b - 1 >= 0 /\ a >= b + 1 ] (?, 1) evalloopsbb3in(a, b) -> evalloopsbb4in(a, 2*b) [ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 ] (1, 0) inner_10000_start_sep(a, b) -> evalloopsbb4in(a, 1) start location: inner_10000_start_sep leaf cost: 0 A polynomial rank function with Pol(evalloopsbb4in) = 2*V_1 - 2*V_2 Pol(evalloopsbb3in) = 2*V_1 - 2*V_2 - 1 Pol(inner_10000_start_sep) = 2*V_1 - 2 orients all transitions weakly and the transitions evalloopsbb4in(a, b) -> evalloopsbb3in(a, b) [ b - 1 >= 0 /\ a >= b + 1 ] evalloopsbb3in(a, b) -> evalloopsbb4in(a, 2*b) [ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 ] strictly and produces the following problem: 10003: T: (2*a + 2, 1) evalloopsbb4in(a, b) -> evalloopsbb3in(a, b) [ b - 1 >= 0 /\ a >= b + 1 ] (2*a + 2, 1) evalloopsbb3in(a, b) -> evalloopsbb4in(a, 2*b) [ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 ] (1, 0) inner_10000_start_sep(a, b) -> evalloopsbb4in(a, 1) start location: inner_10000_start_sep leaf cost: 0 === end of proof for isolated subproblem 10001 === Applying the information from the isolated subproblem 10001 to problem 3 produces the following problem: 4: T: (?, 0) inner_10000_in_sep(a, b) -> inner_10000_out_sep(a, b) (?, 4*a + 4) inner_10000_in_sep(a, b) -> inner_10000_compl_sep(a, b) (?, 0) inner_10000_compl_sep(a, b) -> inner_10000_out_sep(a, b_sep) [ a >= 0 /\ b_sep >= 0 /\ b_sep <= 3*a + 2*a^2 + 1 ] (?, 0) inner_10000_compl_sep(a, b) -> inner_10000_out_sep(a, b_sep) [ a >= 0 /\ b_sep < 0 /\ -b_sep <= 3*a + 2*a^2 + 1 ] (?, 0) inner_10000_compl_sep(a, b) -> inner_10000_out_sep(a, b_sep) [ a < 0 /\ b_sep >= 0 /\ b_sep <= -3*a + 2*a^2 + 1 ] (?, 0) inner_10000_compl_sep(a, b) -> inner_10000_out_sep(a, b_sep) [ a < 0 /\ b_sep < 0 /\ -b_sep <= -3*a + 2*a^2 + 1 ] (?, 1) inner_10000_out_sep(a, b) -> evalloopsbb5in(a, b) [ b >= a ] (?, 1) evalloopsbb1in(a, b) -> inner_10000_in_sep(a, 1) [ a >= 2 ] (?, 1) evalloopsbb5in(a, b) -> evalloopsbb6in(a - 1, b) (?, 1) evalloopsbb1in(a, b) -> evalloopsbb5in(a, c) [ 1 >= a ] (?, 1) evalloopsbb6in(a, b) -> evalloopsbb1in(a, b) [ a >= 0 ] (1, 1) evalloopsentryin(a, b) -> evalloopsbb6in(a, b) [ a >= 0 ] (1, 1) evalloopsstart(a, b) -> evalloopsentryin(a, b) start location: evalloopsstart leaf cost: 3 Applied AI with 'oct' on problem 4 to obtain the following invariants: For symbol evalloopsbb1in: X_1 >= 0 For symbol evalloopsbb5in: X_1 >= 0 For symbol inner_10000_compl_sep: -X_2 + 1 >= 0 /\ X_1 - X_2 - 1 >= 0 /\ X_2 - 1 >= 0 /\ X_1 + X_2 - 3 >= 0 /\ X_1 - 2 >= 0 For symbol inner_10000_in_sep: -X_2 + 1 >= 0 /\ X_1 - X_2 - 1 >= 0 /\ X_2 - 1 >= 0 /\ X_1 + X_2 - 3 >= 0 /\ X_1 - 2 >= 0 For symbol inner_10000_out_sep: X_1 - 2 >= 0 This yielded the following problem: 5: T: (1, 1) evalloopsstart(a, b) -> evalloopsentryin(a, b) (1, 1) evalloopsentryin(a, b) -> evalloopsbb6in(a, b) [ a >= 0 ] (?, 1) evalloopsbb6in(a, b) -> evalloopsbb1in(a, b) [ a >= 0 ] (?, 1) evalloopsbb1in(a, b) -> evalloopsbb5in(a, c) [ a >= 0 /\ 1 >= a ] (?, 1) evalloopsbb5in(a, b) -> evalloopsbb6in(a - 1, b) [ a >= 0 ] (?, 1) evalloopsbb1in(a, b) -> inner_10000_in_sep(a, 1) [ a >= 0 /\ a >= 2 ] (?, 1) inner_10000_out_sep(a, b) -> evalloopsbb5in(a, b) [ a - 2 >= 0 /\ b >= a ] (?, 0) inner_10000_compl_sep(a, b) -> inner_10000_out_sep(a, b_sep) [ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 /\ a < 0 /\ b_sep < 0 /\ -b_sep <= -3*a + 2*a^2 + 1 ] (?, 0) inner_10000_compl_sep(a, b) -> inner_10000_out_sep(a, b_sep) [ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 /\ a < 0 /\ b_sep >= 0 /\ b_sep <= -3*a + 2*a^2 + 1 ] (?, 0) inner_10000_compl_sep(a, b) -> inner_10000_out_sep(a, b_sep) [ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 /\ a >= 0 /\ b_sep < 0 /\ -b_sep <= 3*a + 2*a^2 + 1 ] (?, 0) inner_10000_compl_sep(a, b) -> inner_10000_out_sep(a, b_sep) [ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 /\ a >= 0 /\ b_sep >= 0 /\ b_sep <= 3*a + 2*a^2 + 1 ] (?, 4*a + 4) inner_10000_in_sep(a, b) -> inner_10000_compl_sep(a, b) [ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 ] (?, 0) inner_10000_in_sep(a, b) -> inner_10000_out_sep(a, b) [ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 ] start location: evalloopsstart leaf cost: 3 Testing for unsatisfiable constraints removes the following transitions from problem 5: inner_10000_compl_sep(a, b) -> inner_10000_out_sep(a, b_sep) [ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 /\ a < 0 /\ b_sep < 0 /\ -b_sep <= -3*a + 2*a^2 + 1 ] inner_10000_compl_sep(a, b) -> inner_10000_out_sep(a, b_sep) [ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 /\ a < 0 /\ b_sep >= 0 /\ b_sep <= -3*a + 2*a^2 + 1 ] We thus obtain the following problem: 6: T: (1, 1) evalloopsstart(a, b) -> evalloopsentryin(a, b) (1, 1) evalloopsentryin(a, b) -> evalloopsbb6in(a, b) [ a >= 0 ] (?, 1) evalloopsbb6in(a, b) -> evalloopsbb1in(a, b) [ a >= 0 ] (?, 1) evalloopsbb1in(a, b) -> evalloopsbb5in(a, c) [ a >= 0 /\ 1 >= a ] (?, 1) evalloopsbb5in(a, b) -> evalloopsbb6in(a - 1, b) [ a >= 0 ] (?, 1) evalloopsbb1in(a, b) -> inner_10000_in_sep(a, 1) [ a >= 0 /\ a >= 2 ] (?, 1) inner_10000_out_sep(a, b) -> evalloopsbb5in(a, b) [ a - 2 >= 0 /\ b >= a ] (?, 0) inner_10000_compl_sep(a, b) -> inner_10000_out_sep(a, b_sep) [ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 /\ a >= 0 /\ b_sep < 0 /\ -b_sep <= 3*a + 2*a^2 + 1 ] (?, 0) inner_10000_compl_sep(a, b) -> inner_10000_out_sep(a, b_sep) [ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 /\ a >= 0 /\ b_sep >= 0 /\ b_sep <= 3*a + 2*a^2 + 1 ] (?, 4*a + 4) inner_10000_in_sep(a, b) -> inner_10000_compl_sep(a, b) [ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 ] (?, 0) inner_10000_in_sep(a, b) -> inner_10000_out_sep(a, b) [ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 ] start location: evalloopsstart leaf cost: 3 A polynomial rank function with Pol(evalloopsstart) = 6*V_1 + 6 Pol(evalloopsentryin) = 6*V_1 + 6 Pol(evalloopsbb6in) = 6*V_1 + 6 Pol(evalloopsbb1in) = 6*V_1 + 5 Pol(evalloopsbb5in) = 6*V_1 + 1 Pol(inner_10000_in_sep) = 6*V_1 + 4 Pol(inner_10000_out_sep) = 6*V_1 + 2 Pol(inner_10000_compl_sep) = 6*V_1 + 3 orients all transitions weakly and the transitions inner_10000_out_sep(a, b) -> evalloopsbb5in(a, b) [ a - 2 >= 0 /\ b >= a ] inner_10000_in_sep(a, b) -> inner_10000_out_sep(a, b) [ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 ] inner_10000_in_sep(a, b) -> inner_10000_compl_sep(a, b) [ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 ] inner_10000_compl_sep(a, b) -> inner_10000_out_sep(a, b_sep) [ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 /\ a >= 0 /\ b_sep < 0 /\ -b_sep <= 3*a + 2*a^2 + 1 ] inner_10000_compl_sep(a, b) -> inner_10000_out_sep(a, b_sep) [ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 /\ a >= 0 /\ b_sep >= 0 /\ b_sep <= 3*a + 2*a^2 + 1 ] evalloopsbb6in(a, b) -> evalloopsbb1in(a, b) [ a >= 0 ] evalloopsbb5in(a, b) -> evalloopsbb6in(a - 1, b) [ a >= 0 ] evalloopsbb1in(a, b) -> inner_10000_in_sep(a, 1) [ a >= 0 /\ a >= 2 ] evalloopsbb1in(a, b) -> evalloopsbb5in(a, c) [ a >= 0 /\ 1 >= a ] strictly and produces the following problem: 7: T: (1, 1) evalloopsstart(a, b) -> evalloopsentryin(a, b) (1, 1) evalloopsentryin(a, b) -> evalloopsbb6in(a, b) [ a >= 0 ] (6*a + 6, 1) evalloopsbb6in(a, b) -> evalloopsbb1in(a, b) [ a >= 0 ] (6*a + 6, 1) evalloopsbb1in(a, b) -> evalloopsbb5in(a, c) [ a >= 0 /\ 1 >= a ] (6*a + 6, 1) evalloopsbb5in(a, b) -> evalloopsbb6in(a - 1, b) [ a >= 0 ] (6*a + 6, 1) evalloopsbb1in(a, b) -> inner_10000_in_sep(a, 1) [ a >= 0 /\ a >= 2 ] (6*a + 6, 1) inner_10000_out_sep(a, b) -> evalloopsbb5in(a, b) [ a - 2 >= 0 /\ b >= a ] (6*a + 6, 0) inner_10000_compl_sep(a, b) -> inner_10000_out_sep(a, b_sep) [ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 /\ a >= 0 /\ b_sep < 0 /\ -b_sep <= 3*a + 2*a^2 + 1 ] (6*a + 6, 0) inner_10000_compl_sep(a, b) -> inner_10000_out_sep(a, b_sep) [ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 /\ a >= 0 /\ b_sep >= 0 /\ b_sep <= 3*a + 2*a^2 + 1 ] (6*a + 6, 4*a + 4) inner_10000_in_sep(a, b) -> inner_10000_compl_sep(a, b) [ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 ] (6*a + 6, 0) inner_10000_in_sep(a, b) -> inner_10000_out_sep(a, b) [ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 ] start location: evalloopsstart leaf cost: 3 Complexity upper bound 126*a + 24*a^2 + 107 Time: 0.739 sec (SMT: 0.704 sec)