YES(?, 172748*b + 384*b^2 + 129349) Initial complexity problem: 1: T: (1, 1) evalinsertsortstart(a, b, c, d) -> evalinsertsortentryin(a, b, c, d) (?, 1) evalinsertsortentryin(a, b, c, d) -> evalinsertsortbb5in(1, b, c, d) (?, 1) evalinsertsortbb5in(a, b, c, d) -> evalinsertsortbbin(a, b, c, d) [ b >= a + 1 ] (?, 1) evalinsertsortbb5in(a, b, c, d) -> evalinsertsortreturnin(a, b, c, d) [ a >= b ] (?, 1) evalinsertsortbbin(a, b, c, d) -> evalinsertsortbb2in(a, b, e, a - 1) (?, 1) evalinsertsortbb2in(a, b, c, d) -> evalinsertsortbb4in(a, b, c, d) [ 0 >= d + 1 ] (?, 1) evalinsertsortbb2in(a, b, c, d) -> evalinsertsortbb3in(a, b, c, d) [ d >= 0 ] (?, 1) evalinsertsortbb3in(a, b, c, d) -> evalinsertsortbb1in(a, b, c, d) [ e >= c + 1 ] (?, 1) evalinsertsortbb3in(a, b, c, d) -> evalinsertsortbb4in(a, b, c, d) [ c >= e ] (?, 1) evalinsertsortbb1in(a, b, c, d) -> evalinsertsortbb2in(a, b, c, d - 1) (?, 1) evalinsertsortbb4in(a, b, c, d) -> evalinsertsortbb5in(a + 1, b, c, d) (?, 1) evalinsertsortreturnin(a, b, c, d) -> evalinsertsortstop(a, b, c, d) start location: evalinsertsortstart leaf cost: 0 Repeatedly removing leaves of the complexity graph in problem 1 produces the following problem: 2: T: (1, 1) evalinsertsortstart(a, b, c, d) -> evalinsertsortentryin(a, b, c, d) (?, 1) evalinsertsortentryin(a, b, c, d) -> evalinsertsortbb5in(1, b, c, d) (?, 1) evalinsertsortbb5in(a, b, c, d) -> evalinsertsortbbin(a, b, c, d) [ b >= a + 1 ] (?, 1) evalinsertsortbbin(a, b, c, d) -> evalinsertsortbb2in(a, b, e, a - 1) (?, 1) evalinsertsortbb2in(a, b, c, d) -> evalinsertsortbb4in(a, b, c, d) [ 0 >= d + 1 ] (?, 1) evalinsertsortbb2in(a, b, c, d) -> evalinsertsortbb3in(a, b, c, d) [ d >= 0 ] (?, 1) evalinsertsortbb3in(a, b, c, d) -> evalinsertsortbb1in(a, b, c, d) [ e >= c + 1 ] (?, 1) evalinsertsortbb3in(a, b, c, d) -> evalinsertsortbb4in(a, b, c, d) [ c >= e ] (?, 1) evalinsertsortbb1in(a, b, c, d) -> evalinsertsortbb2in(a, b, c, d - 1) (?, 1) evalinsertsortbb4in(a, b, c, d) -> evalinsertsortbb5in(a + 1, b, c, d) start location: evalinsertsortstart leaf cost: 2 Repeatedly propagating knowledge in problem 2 produces the following problem: 3: T: (1, 1) evalinsertsortstart(a, b, c, d) -> evalinsertsortentryin(a, b, c, d) (1, 1) evalinsertsortentryin(a, b, c, d) -> evalinsertsortbb5in(1, b, c, d) (?, 1) evalinsertsortbb5in(a, b, c, d) -> evalinsertsortbbin(a, b, c, d) [ b >= a + 1 ] (?, 1) evalinsertsortbbin(a, b, c, d) -> evalinsertsortbb2in(a, b, e, a - 1) (?, 1) evalinsertsortbb2in(a, b, c, d) -> evalinsertsortbb4in(a, b, c, d) [ 0 >= d + 1 ] (?, 1) evalinsertsortbb2in(a, b, c, d) -> evalinsertsortbb3in(a, b, c, d) [ d >= 0 ] (?, 1) evalinsertsortbb3in(a, b, c, d) -> evalinsertsortbb1in(a, b, c, d) [ e >= c + 1 ] (?, 1) evalinsertsortbb3in(a, b, c, d) -> evalinsertsortbb4in(a, b, c, d) [ c >= e ] (?, 1) evalinsertsortbb1in(a, b, c, d) -> evalinsertsortbb2in(a, b, c, d - 1) (?, 1) evalinsertsortbb4in(a, b, c, d) -> evalinsertsortbb5in(a + 1, b, c, d) start location: evalinsertsortstart leaf cost: 2 A polynomial rank function with Pol(evalinsertsortstart) = 4*V_2 - 3 Pol(evalinsertsortentryin) = 4*V_2 - 3 Pol(evalinsertsortbb5in) = -4*V_1 + 4*V_2 + 1 Pol(evalinsertsortbbin) = -4*V_1 + 4*V_2 Pol(evalinsertsortbb2in) = -4*V_1 + 4*V_2 - 1 Pol(evalinsertsortbb4in) = -4*V_1 + 4*V_2 - 2 Pol(evalinsertsortbb3in) = -4*V_1 + 4*V_2 - 1 Pol(evalinsertsortbb1in) = -4*V_1 + 4*V_2 - 1 orients all transitions weakly and the transition evalinsertsortbb5in(a, b, c, d) -> evalinsertsortbbin(a, b, c, d) [ b >= a + 1 ] strictly and produces the following problem: 4: T: (1, 1) evalinsertsortstart(a, b, c, d) -> evalinsertsortentryin(a, b, c, d) (1, 1) evalinsertsortentryin(a, b, c, d) -> evalinsertsortbb5in(1, b, c, d) (4*b + 3, 1) evalinsertsortbb5in(a, b, c, d) -> evalinsertsortbbin(a, b, c, d) [ b >= a + 1 ] (?, 1) evalinsertsortbbin(a, b, c, d) -> evalinsertsortbb2in(a, b, e, a - 1) (?, 1) evalinsertsortbb2in(a, b, c, d) -> evalinsertsortbb4in(a, b, c, d) [ 0 >= d + 1 ] (?, 1) evalinsertsortbb2in(a, b, c, d) -> evalinsertsortbb3in(a, b, c, d) [ d >= 0 ] (?, 1) evalinsertsortbb3in(a, b, c, d) -> evalinsertsortbb1in(a, b, c, d) [ e >= c + 1 ] (?, 1) evalinsertsortbb3in(a, b, c, d) -> evalinsertsortbb4in(a, b, c, d) [ c >= e ] (?, 1) evalinsertsortbb1in(a, b, c, d) -> evalinsertsortbb2in(a, b, c, d - 1) (?, 1) evalinsertsortbb4in(a, b, c, d) -> evalinsertsortbb5in(a + 1, b, c, d) start location: evalinsertsortstart leaf cost: 2 Repeatedly propagating knowledge in problem 4 produces the following problem: 5: T: (1, 1) evalinsertsortstart(a, b, c, d) -> evalinsertsortentryin(a, b, c, d) (1, 1) evalinsertsortentryin(a, b, c, d) -> evalinsertsortbb5in(1, b, c, d) (4*b + 3, 1) evalinsertsortbb5in(a, b, c, d) -> evalinsertsortbbin(a, b, c, d) [ b >= a + 1 ] (4*b + 3, 1) evalinsertsortbbin(a, b, c, d) -> evalinsertsortbb2in(a, b, e, a - 1) (?, 1) evalinsertsortbb2in(a, b, c, d) -> evalinsertsortbb4in(a, b, c, d) [ 0 >= d + 1 ] (?, 1) evalinsertsortbb2in(a, b, c, d) -> evalinsertsortbb3in(a, b, c, d) [ d >= 0 ] (?, 1) evalinsertsortbb3in(a, b, c, d) -> evalinsertsortbb1in(a, b, c, d) [ e >= c + 1 ] (?, 1) evalinsertsortbb3in(a, b, c, d) -> evalinsertsortbb4in(a, b, c, d) [ c >= e ] (?, 1) evalinsertsortbb1in(a, b, c, d) -> evalinsertsortbb2in(a, b, c, d - 1) (?, 1) evalinsertsortbb4in(a, b, c, d) -> evalinsertsortbb5in(a + 1, b, c, d) start location: evalinsertsortstart leaf cost: 2 A polynomial rank function with Pol(evalinsertsortbb4in) = 1 Pol(evalinsertsortbb5in) = 0 Pol(evalinsertsortbb3in) = 2 Pol(evalinsertsortbb1in) = 2 Pol(evalinsertsortbb2in) = 2 and size complexities S("evalinsertsortbb4in(a, b, c, d) -> evalinsertsortbb5in(a + 1, b, c, d)", 0-0) = ? S("evalinsertsortbb4in(a, b, c, d) -> evalinsertsortbb5in(a + 1, b, c, d)", 0-1) = b S("evalinsertsortbb4in(a, b, c, d) -> evalinsertsortbb5in(a + 1, b, c, d)", 0-2) = ? S("evalinsertsortbb4in(a, b, c, d) -> evalinsertsortbb5in(a + 1, b, c, d)", 0-3) = ? S("evalinsertsortbb1in(a, b, c, d) -> evalinsertsortbb2in(a, b, c, d - 1)", 0-0) = ? S("evalinsertsortbb1in(a, b, c, d) -> evalinsertsortbb2in(a, b, c, d - 1)", 0-1) = b S("evalinsertsortbb1in(a, b, c, d) -> evalinsertsortbb2in(a, b, c, d - 1)", 0-2) = ? S("evalinsertsortbb1in(a, b, c, d) -> evalinsertsortbb2in(a, b, c, d - 1)", 0-3) = ? S("evalinsertsortbb3in(a, b, c, d) -> evalinsertsortbb4in(a, b, c, d) [ c >= e ]", 0-0) = ? S("evalinsertsortbb3in(a, b, c, d) -> evalinsertsortbb4in(a, b, c, d) [ c >= e ]", 0-1) = b S("evalinsertsortbb3in(a, b, c, d) -> evalinsertsortbb4in(a, b, c, d) [ c >= e ]", 0-2) = ? S("evalinsertsortbb3in(a, b, c, d) -> evalinsertsortbb4in(a, b, c, d) [ c >= e ]", 0-3) = ? S("evalinsertsortbb3in(a, b, c, d) -> evalinsertsortbb1in(a, b, c, d) [ e >= c + 1 ]", 0-0) = ? S("evalinsertsortbb3in(a, b, c, d) -> evalinsertsortbb1in(a, b, c, d) [ e >= c + 1 ]", 0-1) = b S("evalinsertsortbb3in(a, b, c, d) -> evalinsertsortbb1in(a, b, c, d) [ e >= c + 1 ]", 0-2) = ? S("evalinsertsortbb3in(a, b, c, d) -> evalinsertsortbb1in(a, b, c, d) [ e >= c + 1 ]", 0-3) = ? S("evalinsertsortbb2in(a, b, c, d) -> evalinsertsortbb3in(a, b, c, d) [ d >= 0 ]", 0-0) = ? S("evalinsertsortbb2in(a, b, c, d) -> evalinsertsortbb3in(a, b, c, d) [ d >= 0 ]", 0-1) = b S("evalinsertsortbb2in(a, b, c, d) -> evalinsertsortbb3in(a, b, c, d) [ d >= 0 ]", 0-2) = ? S("evalinsertsortbb2in(a, b, c, d) -> evalinsertsortbb3in(a, b, c, d) [ d >= 0 ]", 0-3) = ? S("evalinsertsortbb2in(a, b, c, d) -> evalinsertsortbb4in(a, b, c, d) [ 0 >= d + 1 ]", 0-0) = ? S("evalinsertsortbb2in(a, b, c, d) -> evalinsertsortbb4in(a, b, c, d) [ 0 >= d + 1 ]", 0-1) = b S("evalinsertsortbb2in(a, b, c, d) -> evalinsertsortbb4in(a, b, c, d) [ 0 >= d + 1 ]", 0-2) = ? S("evalinsertsortbb2in(a, b, c, d) -> evalinsertsortbb4in(a, b, c, d) [ 0 >= d + 1 ]", 0-3) = ? S("evalinsertsortbbin(a, b, c, d) -> evalinsertsortbb2in(a, b, e, a - 1)", 0-0) = ? S("evalinsertsortbbin(a, b, c, d) -> evalinsertsortbb2in(a, b, e, a - 1)", 0-1) = b S("evalinsertsortbbin(a, b, c, d) -> evalinsertsortbb2in(a, b, e, a - 1)", 0-2) = ? S("evalinsertsortbbin(a, b, c, d) -> evalinsertsortbb2in(a, b, e, a - 1)", 0-3) = ? S("evalinsertsortbb5in(a, b, c, d) -> evalinsertsortbbin(a, b, c, d) [ b >= a + 1 ]", 0-0) = ? S("evalinsertsortbb5in(a, b, c, d) -> evalinsertsortbbin(a, b, c, d) [ b >= a + 1 ]", 0-1) = b S("evalinsertsortbb5in(a, b, c, d) -> evalinsertsortbbin(a, b, c, d) [ b >= a + 1 ]", 0-2) = ? S("evalinsertsortbb5in(a, b, c, d) -> evalinsertsortbbin(a, b, c, d) [ b >= a + 1 ]", 0-3) = ? S("evalinsertsortentryin(a, b, c, d) -> evalinsertsortbb5in(1, b, c, d)", 0-0) = 1 S("evalinsertsortentryin(a, b, c, d) -> evalinsertsortbb5in(1, b, c, d)", 0-1) = b S("evalinsertsortentryin(a, b, c, d) -> evalinsertsortbb5in(1, b, c, d)", 0-2) = c S("evalinsertsortentryin(a, b, c, d) -> evalinsertsortbb5in(1, b, c, d)", 0-3) = d S("evalinsertsortstart(a, b, c, d) -> evalinsertsortentryin(a, b, c, d)", 0-0) = a S("evalinsertsortstart(a, b, c, d) -> evalinsertsortentryin(a, b, c, d)", 0-1) = b S("evalinsertsortstart(a, b, c, d) -> evalinsertsortentryin(a, b, c, d)", 0-2) = c S("evalinsertsortstart(a, b, c, d) -> evalinsertsortentryin(a, b, c, d)", 0-3) = d orients the transitions evalinsertsortbb4in(a, b, c, d) -> evalinsertsortbb5in(a + 1, b, c, d) evalinsertsortbb3in(a, b, c, d) -> evalinsertsortbb4in(a, b, c, d) [ c >= e ] evalinsertsortbb3in(a, b, c, d) -> evalinsertsortbb1in(a, b, c, d) [ e >= c + 1 ] evalinsertsortbb2in(a, b, c, d) -> evalinsertsortbb4in(a, b, c, d) [ 0 >= d + 1 ] evalinsertsortbb2in(a, b, c, d) -> evalinsertsortbb3in(a, b, c, d) [ d >= 0 ] evalinsertsortbb1in(a, b, c, d) -> evalinsertsortbb2in(a, b, c, d - 1) weakly and the transitions evalinsertsortbb4in(a, b, c, d) -> evalinsertsortbb5in(a + 1, b, c, d) evalinsertsortbb3in(a, b, c, d) -> evalinsertsortbb4in(a, b, c, d) [ c >= e ] evalinsertsortbb2in(a, b, c, d) -> evalinsertsortbb4in(a, b, c, d) [ 0 >= d + 1 ] strictly and produces the following problem: 6: T: (1, 1) evalinsertsortstart(a, b, c, d) -> evalinsertsortentryin(a, b, c, d) (1, 1) evalinsertsortentryin(a, b, c, d) -> evalinsertsortbb5in(1, b, c, d) (4*b + 3, 1) evalinsertsortbb5in(a, b, c, d) -> evalinsertsortbbin(a, b, c, d) [ b >= a + 1 ] (4*b + 3, 1) evalinsertsortbbin(a, b, c, d) -> evalinsertsortbb2in(a, b, e, a - 1) (8*b + 6, 1) evalinsertsortbb2in(a, b, c, d) -> evalinsertsortbb4in(a, b, c, d) [ 0 >= d + 1 ] (?, 1) evalinsertsortbb2in(a, b, c, d) -> evalinsertsortbb3in(a, b, c, d) [ d >= 0 ] (?, 1) evalinsertsortbb3in(a, b, c, d) -> evalinsertsortbb1in(a, b, c, d) [ e >= c + 1 ] (8*b + 6, 1) evalinsertsortbb3in(a, b, c, d) -> evalinsertsortbb4in(a, b, c, d) [ c >= e ] (?, 1) evalinsertsortbb1in(a, b, c, d) -> evalinsertsortbb2in(a, b, c, d - 1) (8*b + 6, 1) evalinsertsortbb4in(a, b, c, d) -> evalinsertsortbb5in(a + 1, b, c, d) start location: evalinsertsortstart leaf cost: 2 A polynomial rank function with Pol(evalinsertsortbb3in) = 4*V_4 - 1 Pol(evalinsertsortbb1in) = 4*V_4 - 2 Pol(evalinsertsortbb2in) = 4*V_4 + 1 and size complexities S("evalinsertsortbb4in(a, b, c, d) -> evalinsertsortbb5in(a + 1, b, c, d)", 0-0) = 8*b + 448 S("evalinsertsortbb4in(a, b, c, d) -> evalinsertsortbb5in(a + 1, b, c, d)", 0-1) = b S("evalinsertsortbb4in(a, b, c, d) -> evalinsertsortbb5in(a + 1, b, c, d)", 0-2) = ? S("evalinsertsortbb4in(a, b, c, d) -> evalinsertsortbb5in(a + 1, b, c, d)", 0-3) = ? S("evalinsertsortbb1in(a, b, c, d) -> evalinsertsortbb2in(a, b, c, d - 1)", 0-0) = 8*b + 448 S("evalinsertsortbb1in(a, b, c, d) -> evalinsertsortbb2in(a, b, c, d - 1)", 0-1) = b S("evalinsertsortbb1in(a, b, c, d) -> evalinsertsortbb2in(a, b, c, d - 1)", 0-2) = ? S("evalinsertsortbb1in(a, b, c, d) -> evalinsertsortbb2in(a, b, c, d - 1)", 0-3) = ? S("evalinsertsortbb3in(a, b, c, d) -> evalinsertsortbb4in(a, b, c, d) [ c >= e ]", 0-0) = 8*b + 448 S("evalinsertsortbb3in(a, b, c, d) -> evalinsertsortbb4in(a, b, c, d) [ c >= e ]", 0-1) = b S("evalinsertsortbb3in(a, b, c, d) -> evalinsertsortbb4in(a, b, c, d) [ c >= e ]", 0-2) = ? S("evalinsertsortbb3in(a, b, c, d) -> evalinsertsortbb4in(a, b, c, d) [ c >= e ]", 0-3) = ? S("evalinsertsortbb3in(a, b, c, d) -> evalinsertsortbb1in(a, b, c, d) [ e >= c + 1 ]", 0-0) = 8*b + 448 S("evalinsertsortbb3in(a, b, c, d) -> evalinsertsortbb1in(a, b, c, d) [ e >= c + 1 ]", 0-1) = b S("evalinsertsortbb3in(a, b, c, d) -> evalinsertsortbb1in(a, b, c, d) [ e >= c + 1 ]", 0-2) = ? S("evalinsertsortbb3in(a, b, c, d) -> evalinsertsortbb1in(a, b, c, d) [ e >= c + 1 ]", 0-3) = ? S("evalinsertsortbb2in(a, b, c, d) -> evalinsertsortbb3in(a, b, c, d) [ d >= 0 ]", 0-0) = 8*b + 448 S("evalinsertsortbb2in(a, b, c, d) -> evalinsertsortbb3in(a, b, c, d) [ d >= 0 ]", 0-1) = b S("evalinsertsortbb2in(a, b, c, d) -> evalinsertsortbb3in(a, b, c, d) [ d >= 0 ]", 0-2) = ? S("evalinsertsortbb2in(a, b, c, d) -> evalinsertsortbb3in(a, b, c, d) [ d >= 0 ]", 0-3) = ? S("evalinsertsortbb2in(a, b, c, d) -> evalinsertsortbb4in(a, b, c, d) [ 0 >= d + 1 ]", 0-0) = 8*b + 448 S("evalinsertsortbb2in(a, b, c, d) -> evalinsertsortbb4in(a, b, c, d) [ 0 >= d + 1 ]", 0-1) = b S("evalinsertsortbb2in(a, b, c, d) -> evalinsertsortbb4in(a, b, c, d) [ 0 >= d + 1 ]", 0-2) = ? S("evalinsertsortbb2in(a, b, c, d) -> evalinsertsortbb4in(a, b, c, d) [ 0 >= d + 1 ]", 0-3) = ? S("evalinsertsortbbin(a, b, c, d) -> evalinsertsortbb2in(a, b, e, a - 1)", 0-0) = 8*b + 448 S("evalinsertsortbbin(a, b, c, d) -> evalinsertsortbb2in(a, b, e, a - 1)", 0-1) = b S("evalinsertsortbbin(a, b, c, d) -> evalinsertsortbb2in(a, b, e, a - 1)", 0-2) = ? S("evalinsertsortbbin(a, b, c, d) -> evalinsertsortbb2in(a, b, e, a - 1)", 0-3) = 8*b + 3592 S("evalinsertsortbb5in(a, b, c, d) -> evalinsertsortbbin(a, b, c, d) [ b >= a + 1 ]", 0-0) = 8*b + 448 S("evalinsertsortbb5in(a, b, c, d) -> evalinsertsortbbin(a, b, c, d) [ b >= a + 1 ]", 0-1) = b S("evalinsertsortbb5in(a, b, c, d) -> evalinsertsortbbin(a, b, c, d) [ b >= a + 1 ]", 0-2) = ? S("evalinsertsortbb5in(a, b, c, d) -> evalinsertsortbbin(a, b, c, d) [ b >= a + 1 ]", 0-3) = ? S("evalinsertsortentryin(a, b, c, d) -> evalinsertsortbb5in(1, b, c, d)", 0-0) = 1 S("evalinsertsortentryin(a, b, c, d) -> evalinsertsortbb5in(1, b, c, d)", 0-1) = b S("evalinsertsortentryin(a, b, c, d) -> evalinsertsortbb5in(1, b, c, d)", 0-2) = c S("evalinsertsortentryin(a, b, c, d) -> evalinsertsortbb5in(1, b, c, d)", 0-3) = d S("evalinsertsortstart(a, b, c, d) -> evalinsertsortentryin(a, b, c, d)", 0-0) = a S("evalinsertsortstart(a, b, c, d) -> evalinsertsortentryin(a, b, c, d)", 0-1) = b S("evalinsertsortstart(a, b, c, d) -> evalinsertsortentryin(a, b, c, d)", 0-2) = c S("evalinsertsortstart(a, b, c, d) -> evalinsertsortentryin(a, b, c, d)", 0-3) = d orients the transitions evalinsertsortbb3in(a, b, c, d) -> evalinsertsortbb1in(a, b, c, d) [ e >= c + 1 ] evalinsertsortbb2in(a, b, c, d) -> evalinsertsortbb3in(a, b, c, d) [ d >= 0 ] evalinsertsortbb1in(a, b, c, d) -> evalinsertsortbb2in(a, b, c, d - 1) weakly and the transition evalinsertsortbb2in(a, b, c, d) -> evalinsertsortbb3in(a, b, c, d) [ d >= 0 ] strictly and produces the following problem: 7: T: (1, 1) evalinsertsortstart(a, b, c, d) -> evalinsertsortentryin(a, b, c, d) (1, 1) evalinsertsortentryin(a, b, c, d) -> evalinsertsortbb5in(1, b, c, d) (4*b + 3, 1) evalinsertsortbb5in(a, b, c, d) -> evalinsertsortbbin(a, b, c, d) [ b >= a + 1 ] (4*b + 3, 1) evalinsertsortbbin(a, b, c, d) -> evalinsertsortbb2in(a, b, e, a - 1) (8*b + 6, 1) evalinsertsortbb2in(a, b, c, d) -> evalinsertsortbb4in(a, b, c, d) [ 0 >= d + 1 ] (128*b^2 + 57572*b + 43107, 1) evalinsertsortbb2in(a, b, c, d) -> evalinsertsortbb3in(a, b, c, d) [ d >= 0 ] (?, 1) evalinsertsortbb3in(a, b, c, d) -> evalinsertsortbb1in(a, b, c, d) [ e >= c + 1 ] (8*b + 6, 1) evalinsertsortbb3in(a, b, c, d) -> evalinsertsortbb4in(a, b, c, d) [ c >= e ] (?, 1) evalinsertsortbb1in(a, b, c, d) -> evalinsertsortbb2in(a, b, c, d - 1) (8*b + 6, 1) evalinsertsortbb4in(a, b, c, d) -> evalinsertsortbb5in(a + 1, b, c, d) start location: evalinsertsortstart leaf cost: 2 Repeatedly propagating knowledge in problem 7 produces the following problem: 8: T: (1, 1) evalinsertsortstart(a, b, c, d) -> evalinsertsortentryin(a, b, c, d) (1, 1) evalinsertsortentryin(a, b, c, d) -> evalinsertsortbb5in(1, b, c, d) (4*b + 3, 1) evalinsertsortbb5in(a, b, c, d) -> evalinsertsortbbin(a, b, c, d) [ b >= a + 1 ] (4*b + 3, 1) evalinsertsortbbin(a, b, c, d) -> evalinsertsortbb2in(a, b, e, a - 1) (8*b + 6, 1) evalinsertsortbb2in(a, b, c, d) -> evalinsertsortbb4in(a, b, c, d) [ 0 >= d + 1 ] (128*b^2 + 57572*b + 43107, 1) evalinsertsortbb2in(a, b, c, d) -> evalinsertsortbb3in(a, b, c, d) [ d >= 0 ] (128*b^2 + 57572*b + 43107, 1) evalinsertsortbb3in(a, b, c, d) -> evalinsertsortbb1in(a, b, c, d) [ e >= c + 1 ] (8*b + 6, 1) evalinsertsortbb3in(a, b, c, d) -> evalinsertsortbb4in(a, b, c, d) [ c >= e ] (128*b^2 + 57572*b + 43107, 1) evalinsertsortbb1in(a, b, c, d) -> evalinsertsortbb2in(a, b, c, d - 1) (8*b + 6, 1) evalinsertsortbb4in(a, b, c, d) -> evalinsertsortbb5in(a + 1, b, c, d) start location: evalinsertsortstart leaf cost: 2 Complexity upper bound 172748*b + 384*b^2 + 129349 Time: 0.279 sec (SMT: 0.260 sec)