YES(?, 36*b^2 + 54*a*b + 18*a^2 + 45*b + 45*a + 5) Initial complexity problem: 1: T: (1, 1) evalfstart(a, b, c) -> evalfentryin(a, b, c) (?, 1) evalfentryin(a, b, c) -> evalfbb3in(c, b, a) [ a >= 1 /\ b >= a + 1 ] (?, 1) evalfbb3in(a, b, c) -> evalfbbin(a, b, c) [ c >= 1 /\ b >= c + 1 ] (?, 1) evalfbb3in(a, b, c) -> evalfreturnin(a, b, c) [ 0 >= c ] (?, 1) evalfbb3in(a, b, c) -> evalfreturnin(a, b, c) [ c >= b ] (?, 1) evalfbbin(a, b, c) -> evalfbb1in(a, b, c) [ a >= 1 ] (?, 1) evalfbbin(a, b, c) -> evalfbb2in(a, b, c) [ 0 >= a ] (?, 1) evalfbb1in(a, b, c) -> evalfbb3in(a, b, c + 1) (?, 1) evalfbb2in(a, b, c) -> evalfbb3in(a, b, c - 1) (?, 1) evalfreturnin(a, b, c) -> evalfstop(a, b, c) start location: evalfstart leaf cost: 0 Repeatedly removing leaves of the complexity graph in problem 1 produces the following problem: 2: T: (1, 1) evalfstart(a, b, c) -> evalfentryin(a, b, c) (?, 1) evalfentryin(a, b, c) -> evalfbb3in(c, b, a) [ a >= 1 /\ b >= a + 1 ] (?, 1) evalfbb3in(a, b, c) -> evalfbbin(a, b, c) [ c >= 1 /\ b >= c + 1 ] (?, 1) evalfbbin(a, b, c) -> evalfbb1in(a, b, c) [ a >= 1 ] (?, 1) evalfbbin(a, b, c) -> evalfbb2in(a, b, c) [ 0 >= a ] (?, 1) evalfbb1in(a, b, c) -> evalfbb3in(a, b, c + 1) (?, 1) evalfbb2in(a, b, c) -> evalfbb3in(a, b, c - 1) start location: evalfstart leaf cost: 3 Repeatedly propagating knowledge in problem 2 produces the following problem: 3: T: (1, 1) evalfstart(a, b, c) -> evalfentryin(a, b, c) (1, 1) evalfentryin(a, b, c) -> evalfbb3in(c, b, a) [ a >= 1 /\ b >= a + 1 ] (?, 1) evalfbb3in(a, b, c) -> evalfbbin(a, b, c) [ c >= 1 /\ b >= c + 1 ] (?, 1) evalfbbin(a, b, c) -> evalfbb1in(a, b, c) [ a >= 1 ] (?, 1) evalfbbin(a, b, c) -> evalfbb2in(a, b, c) [ 0 >= a ] (?, 1) evalfbb1in(a, b, c) -> evalfbb3in(a, b, c + 1) (?, 1) evalfbb2in(a, b, c) -> evalfbb3in(a, b, c - 1) start location: evalfstart leaf cost: 3 Applied AI with 'oct' on problem 3 to obtain the following invariants: For symbol evalfbb1in: X_2 - X_3 - 1 >= 0 /\ X_3 - 1 >= 0 /\ X_2 + X_3 - 3 >= 0 /\ X_1 + X_3 - 2 >= 0 /\ X_2 - 2 >= 0 /\ X_1 + X_2 - 3 >= 0 /\ X_1 - 1 >= 0 For symbol evalfbb2in: X_2 - X_3 - 1 >= 0 /\ X_3 - 1 >= 0 /\ X_2 + X_3 - 3 >= 0 /\ -X_1 + X_3 - 1 >= 0 /\ X_2 - 2 >= 0 /\ -X_1 + X_2 - 2 >= 0 /\ -X_1 >= 0 For symbol evalfbb3in: X_2 - 2 >= 0 For symbol evalfbbin: X_2 - X_3 - 1 >= 0 /\ X_3 - 1 >= 0 /\ X_2 + X_3 - 3 >= 0 /\ X_2 - 2 >= 0 This yielded the following problem: 4: T: (?, 1) evalfbb2in(a, b, c) -> evalfbb3in(a, b, c - 1) [ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ -a + c - 1 >= 0 /\ b - 2 >= 0 /\ -a + b - 2 >= 0 /\ -a >= 0 ] (?, 1) evalfbb1in(a, b, c) -> evalfbb3in(a, b, c + 1) [ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ a + c - 2 >= 0 /\ b - 2 >= 0 /\ a + b - 3 >= 0 /\ a - 1 >= 0 ] (?, 1) evalfbbin(a, b, c) -> evalfbb2in(a, b, c) [ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ b - 2 >= 0 /\ 0 >= a ] (?, 1) evalfbbin(a, b, c) -> evalfbb1in(a, b, c) [ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ b - 2 >= 0 /\ a >= 1 ] (?, 1) evalfbb3in(a, b, c) -> evalfbbin(a, b, c) [ b - 2 >= 0 /\ c >= 1 /\ b >= c + 1 ] (1, 1) evalfentryin(a, b, c) -> evalfbb3in(c, b, a) [ a >= 1 /\ b >= a + 1 ] (1, 1) evalfstart(a, b, c) -> evalfentryin(a, b, c) start location: evalfstart leaf cost: 3 By chaining the transition evalfbb2in(a, b, c) -> evalfbb3in(a, b, c - 1) [ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ -a + c - 1 >= 0 /\ b - 2 >= 0 /\ -a + b - 2 >= 0 /\ -a >= 0 ] with all transitions in problem 4, the following new transition is obtained: evalfbb2in(a, b, c) -> evalfbbin(a, b, c - 1) [ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ -a + c - 1 >= 0 /\ b - 2 >= 0 /\ -a + b - 2 >= 0 /\ -a >= 0 /\ c - 1 >= 1 /\ b >= c ] We thus obtain the following problem: 5: T: (?, 2) evalfbb2in(a, b, c) -> evalfbbin(a, b, c - 1) [ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ -a + c - 1 >= 0 /\ b - 2 >= 0 /\ -a + b - 2 >= 0 /\ -a >= 0 /\ c - 1 >= 1 /\ b >= c ] (?, 1) evalfbb1in(a, b, c) -> evalfbb3in(a, b, c + 1) [ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ a + c - 2 >= 0 /\ b - 2 >= 0 /\ a + b - 3 >= 0 /\ a - 1 >= 0 ] (?, 1) evalfbbin(a, b, c) -> evalfbb2in(a, b, c) [ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ b - 2 >= 0 /\ 0 >= a ] (?, 1) evalfbbin(a, b, c) -> evalfbb1in(a, b, c) [ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ b - 2 >= 0 /\ a >= 1 ] (?, 1) evalfbb3in(a, b, c) -> evalfbbin(a, b, c) [ b - 2 >= 0 /\ c >= 1 /\ b >= c + 1 ] (1, 1) evalfentryin(a, b, c) -> evalfbb3in(c, b, a) [ a >= 1 /\ b >= a + 1 ] (1, 1) evalfstart(a, b, c) -> evalfentryin(a, b, c) start location: evalfstart leaf cost: 3 A polynomial rank function with Pol(evalfbb1in) = 3*V_2 - 3*V_3 - 2 Pol(evalfbb3in) = 3*V_2 - 3*V_3 Pol(evalfbbin) = 3*V_2 - 3*V_3 - 1 and size complexities S("evalfstart(a, b, c) -> evalfentryin(a, b, c)", 0-0) = a S("evalfstart(a, b, c) -> evalfentryin(a, b, c)", 0-1) = b S("evalfstart(a, b, c) -> evalfentryin(a, b, c)", 0-2) = c S("evalfentryin(a, b, c) -> evalfbb3in(c, b, a) [ a >= 1 /\\ b >= a + 1 ]", 0-0) = c S("evalfentryin(a, b, c) -> evalfbb3in(c, b, a) [ a >= 1 /\\ b >= a + 1 ]", 0-1) = b S("evalfentryin(a, b, c) -> evalfbb3in(c, b, a) [ a >= 1 /\\ b >= a + 1 ]", 0-2) = a S("evalfbb3in(a, b, c) -> evalfbbin(a, b, c) [ b - 2 >= 0 /\\ c >= 1 /\\ b >= c + 1 ]", 0-0) = c S("evalfbb3in(a, b, c) -> evalfbbin(a, b, c) [ b - 2 >= 0 /\\ c >= 1 /\\ b >= c + 1 ]", 0-1) = b S("evalfbb3in(a, b, c) -> evalfbbin(a, b, c) [ b - 2 >= 0 /\\ c >= 1 /\\ b >= c + 1 ]", 0-2) = a + b S("evalfbbin(a, b, c) -> evalfbb1in(a, b, c) [ b - c - 1 >= 0 /\\ c - 1 >= 0 /\\ b + c - 3 >= 0 /\\ b - 2 >= 0 /\\ a >= 1 ]", 0-0) = c S("evalfbbin(a, b, c) -> evalfbb1in(a, b, c) [ b - c - 1 >= 0 /\\ c - 1 >= 0 /\\ b + c - 3 >= 0 /\\ b - 2 >= 0 /\\ a >= 1 ]", 0-1) = b S("evalfbbin(a, b, c) -> evalfbb1in(a, b, c) [ b - c - 1 >= 0 /\\ c - 1 >= 0 /\\ b + c - 3 >= 0 /\\ b - 2 >= 0 /\\ a >= 1 ]", 0-2) = a + b S("evalfbbin(a, b, c) -> evalfbb2in(a, b, c) [ b - c - 1 >= 0 /\\ c - 1 >= 0 /\\ b + c - 3 >= 0 /\\ b - 2 >= 0 /\\ 0 >= a ]", 0-0) = c S("evalfbbin(a, b, c) -> evalfbb2in(a, b, c) [ b - c - 1 >= 0 /\\ c - 1 >= 0 /\\ b + c - 3 >= 0 /\\ b - 2 >= 0 /\\ 0 >= a ]", 0-1) = b S("evalfbbin(a, b, c) -> evalfbb2in(a, b, c) [ b - c - 1 >= 0 /\\ c - 1 >= 0 /\\ b + c - 3 >= 0 /\\ b - 2 >= 0 /\\ 0 >= a ]", 0-2) = a + b S("evalfbb1in(a, b, c) -> evalfbb3in(a, b, c + 1) [ b - c - 1 >= 0 /\\ c - 1 >= 0 /\\ b + c - 3 >= 0 /\\ a + c - 2 >= 0 /\\ b - 2 >= 0 /\\ a + b - 3 >= 0 /\\ a - 1 >= 0 ]", 0-0) = c S("evalfbb1in(a, b, c) -> evalfbb3in(a, b, c + 1) [ b - c - 1 >= 0 /\\ c - 1 >= 0 /\\ b + c - 3 >= 0 /\\ a + c - 2 >= 0 /\\ b - 2 >= 0 /\\ a + b - 3 >= 0 /\\ a - 1 >= 0 ]", 0-1) = b S("evalfbb1in(a, b, c) -> evalfbb3in(a, b, c + 1) [ b - c - 1 >= 0 /\\ c - 1 >= 0 /\\ b + c - 3 >= 0 /\\ a + c - 2 >= 0 /\\ b - 2 >= 0 /\\ a + b - 3 >= 0 /\\ a - 1 >= 0 ]", 0-2) = b S("evalfbb2in(a, b, c) -> evalfbbin(a, b, c - 1) [ b - c - 1 >= 0 /\\ c - 1 >= 0 /\\ b + c - 3 >= 0 /\\ -a + c - 1 >= 0 /\\ b - 2 >= 0 /\\ -a + b - 2 >= 0 /\\ -a >= 0 /\\ c - 1 >= 1 /\\ b >= c ]", 0-0) = c S("evalfbb2in(a, b, c) -> evalfbbin(a, b, c - 1) [ b - c - 1 >= 0 /\\ c - 1 >= 0 /\\ b + c - 3 >= 0 /\\ -a + c - 1 >= 0 /\\ b - 2 >= 0 /\\ -a + b - 2 >= 0 /\\ -a >= 0 /\\ c - 1 >= 1 /\\ b >= c ]", 0-1) = b S("evalfbb2in(a, b, c) -> evalfbbin(a, b, c - 1) [ b - c - 1 >= 0 /\\ c - 1 >= 0 /\\ b + c - 3 >= 0 /\\ -a + c - 1 >= 0 /\\ b - 2 >= 0 /\\ -a + b - 2 >= 0 /\\ -a >= 0 /\\ c - 1 >= 1 /\\ b >= c ]", 0-2) = a + b orients the transitions evalfbb1in(a, b, c) -> evalfbb3in(a, b, c + 1) [ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ a + c - 2 >= 0 /\ b - 2 >= 0 /\ a + b - 3 >= 0 /\ a - 1 >= 0 ] evalfbbin(a, b, c) -> evalfbb1in(a, b, c) [ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ b - 2 >= 0 /\ a >= 1 ] evalfbb3in(a, b, c) -> evalfbbin(a, b, c) [ b - 2 >= 0 /\ c >= 1 /\ b >= c + 1 ] weakly and the transitions evalfbbin(a, b, c) -> evalfbb1in(a, b, c) [ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ b - 2 >= 0 /\ a >= 1 ] evalfbb3in(a, b, c) -> evalfbbin(a, b, c) [ b - 2 >= 0 /\ c >= 1 /\ b >= c + 1 ] evalfbb1in(a, b, c) -> evalfbb3in(a, b, c + 1) [ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ a + c - 2 >= 0 /\ b - 2 >= 0 /\ a + b - 3 >= 0 /\ a - 1 >= 0 ] strictly and produces the following problem: 6: T: (?, 2) evalfbb2in(a, b, c) -> evalfbbin(a, b, c - 1) [ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ -a + c - 1 >= 0 /\ b - 2 >= 0 /\ -a + b - 2 >= 0 /\ -a >= 0 /\ c - 1 >= 1 /\ b >= c ] (3*b + 3*a, 1) evalfbb1in(a, b, c) -> evalfbb3in(a, b, c + 1) [ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ a + c - 2 >= 0 /\ b - 2 >= 0 /\ a + b - 3 >= 0 /\ a - 1 >= 0 ] (?, 1) evalfbbin(a, b, c) -> evalfbb2in(a, b, c) [ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ b - 2 >= 0 /\ 0 >= a ] (3*b + 3*a, 1) evalfbbin(a, b, c) -> evalfbb1in(a, b, c) [ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ b - 2 >= 0 /\ a >= 1 ] (3*b + 3*a, 1) evalfbb3in(a, b, c) -> evalfbbin(a, b, c) [ b - 2 >= 0 /\ c >= 1 /\ b >= c + 1 ] (1, 1) evalfentryin(a, b, c) -> evalfbb3in(c, b, a) [ a >= 1 /\ b >= a + 1 ] (1, 1) evalfstart(a, b, c) -> evalfentryin(a, b, c) start location: evalfstart leaf cost: 3 A polynomial rank function with Pol(evalfbbin) = 2*V_2 + 2*V_3 - 4 Pol(evalfbb2in) = 2*V_2 + 2*V_3 - 5 and size complexities S("evalfstart(a, b, c) -> evalfentryin(a, b, c)", 0-0) = a S("evalfstart(a, b, c) -> evalfentryin(a, b, c)", 0-1) = b S("evalfstart(a, b, c) -> evalfentryin(a, b, c)", 0-2) = c S("evalfentryin(a, b, c) -> evalfbb3in(c, b, a) [ a >= 1 /\\ b >= a + 1 ]", 0-0) = c S("evalfentryin(a, b, c) -> evalfbb3in(c, b, a) [ a >= 1 /\\ b >= a + 1 ]", 0-1) = b S("evalfentryin(a, b, c) -> evalfbb3in(c, b, a) [ a >= 1 /\\ b >= a + 1 ]", 0-2) = a S("evalfbb3in(a, b, c) -> evalfbbin(a, b, c) [ b - 2 >= 0 /\\ c >= 1 /\\ b >= c + 1 ]", 0-0) = c S("evalfbb3in(a, b, c) -> evalfbbin(a, b, c) [ b - 2 >= 0 /\\ c >= 1 /\\ b >= c + 1 ]", 0-1) = b S("evalfbb3in(a, b, c) -> evalfbbin(a, b, c) [ b - 2 >= 0 /\\ c >= 1 /\\ b >= c + 1 ]", 0-2) = a + b S("evalfbbin(a, b, c) -> evalfbb1in(a, b, c) [ b - c - 1 >= 0 /\\ c - 1 >= 0 /\\ b + c - 3 >= 0 /\\ b - 2 >= 0 /\\ a >= 1 ]", 0-0) = c S("evalfbbin(a, b, c) -> evalfbb1in(a, b, c) [ b - c - 1 >= 0 /\\ c - 1 >= 0 /\\ b + c - 3 >= 0 /\\ b - 2 >= 0 /\\ a >= 1 ]", 0-1) = b S("evalfbbin(a, b, c) -> evalfbb1in(a, b, c) [ b - c - 1 >= 0 /\\ c - 1 >= 0 /\\ b + c - 3 >= 0 /\\ b - 2 >= 0 /\\ a >= 1 ]", 0-2) = a + b S("evalfbbin(a, b, c) -> evalfbb2in(a, b, c) [ b - c - 1 >= 0 /\\ c - 1 >= 0 /\\ b + c - 3 >= 0 /\\ b - 2 >= 0 /\\ 0 >= a ]", 0-0) = c S("evalfbbin(a, b, c) -> evalfbb2in(a, b, c) [ b - c - 1 >= 0 /\\ c - 1 >= 0 /\\ b + c - 3 >= 0 /\\ b - 2 >= 0 /\\ 0 >= a ]", 0-1) = b S("evalfbbin(a, b, c) -> evalfbb2in(a, b, c) [ b - c - 1 >= 0 /\\ c - 1 >= 0 /\\ b + c - 3 >= 0 /\\ b - 2 >= 0 /\\ 0 >= a ]", 0-2) = a + b S("evalfbb1in(a, b, c) -> evalfbb3in(a, b, c + 1) [ b - c - 1 >= 0 /\\ c - 1 >= 0 /\\ b + c - 3 >= 0 /\\ a + c - 2 >= 0 /\\ b - 2 >= 0 /\\ a + b - 3 >= 0 /\\ a - 1 >= 0 ]", 0-0) = c S("evalfbb1in(a, b, c) -> evalfbb3in(a, b, c + 1) [ b - c - 1 >= 0 /\\ c - 1 >= 0 /\\ b + c - 3 >= 0 /\\ a + c - 2 >= 0 /\\ b - 2 >= 0 /\\ a + b - 3 >= 0 /\\ a - 1 >= 0 ]", 0-1) = b S("evalfbb1in(a, b, c) -> evalfbb3in(a, b, c + 1) [ b - c - 1 >= 0 /\\ c - 1 >= 0 /\\ b + c - 3 >= 0 /\\ a + c - 2 >= 0 /\\ b - 2 >= 0 /\\ a + b - 3 >= 0 /\\ a - 1 >= 0 ]", 0-2) = b S("evalfbb2in(a, b, c) -> evalfbbin(a, b, c - 1) [ b - c - 1 >= 0 /\\ c - 1 >= 0 /\\ b + c - 3 >= 0 /\\ -a + c - 1 >= 0 /\\ b - 2 >= 0 /\\ -a + b - 2 >= 0 /\\ -a >= 0 /\\ c - 1 >= 1 /\\ b >= c ]", 0-0) = c S("evalfbb2in(a, b, c) -> evalfbbin(a, b, c - 1) [ b - c - 1 >= 0 /\\ c - 1 >= 0 /\\ b + c - 3 >= 0 /\\ -a + c - 1 >= 0 /\\ b - 2 >= 0 /\\ -a + b - 2 >= 0 /\\ -a >= 0 /\\ c - 1 >= 1 /\\ b >= c ]", 0-1) = b S("evalfbb2in(a, b, c) -> evalfbbin(a, b, c - 1) [ b - c - 1 >= 0 /\\ c - 1 >= 0 /\\ b + c - 3 >= 0 /\\ -a + c - 1 >= 0 /\\ b - 2 >= 0 /\\ -a + b - 2 >= 0 /\\ -a >= 0 /\\ c - 1 >= 1 /\\ b >= c ]", 0-2) = a + b orients the transitions evalfbbin(a, b, c) -> evalfbb2in(a, b, c) [ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ b - 2 >= 0 /\ 0 >= a ] evalfbb2in(a, b, c) -> evalfbbin(a, b, c - 1) [ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ -a + c - 1 >= 0 /\ b - 2 >= 0 /\ -a + b - 2 >= 0 /\ -a >= 0 /\ c - 1 >= 1 /\ b >= c ] weakly and the transitions evalfbbin(a, b, c) -> evalfbb2in(a, b, c) [ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ b - 2 >= 0 /\ 0 >= a ] evalfbb2in(a, b, c) -> evalfbbin(a, b, c - 1) [ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ -a + c - 1 >= 0 /\ b - 2 >= 0 /\ -a + b - 2 >= 0 /\ -a >= 0 /\ c - 1 >= 1 /\ b >= c ] strictly and produces the following problem: 7: T: (12*b^2 + 18*a*b + 6*a^2 + 12*b + 12*a, 2) evalfbb2in(a, b, c) -> evalfbbin(a, b, c - 1) [ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ -a + c - 1 >= 0 /\ b - 2 >= 0 /\ -a + b - 2 >= 0 /\ -a >= 0 /\ c - 1 >= 1 /\ b >= c ] (3*b + 3*a, 1) evalfbb1in(a, b, c) -> evalfbb3in(a, b, c + 1) [ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ a + c - 2 >= 0 /\ b - 2 >= 0 /\ a + b - 3 >= 0 /\ a - 1 >= 0 ] (12*b^2 + 18*a*b + 6*a^2 + 12*b + 12*a, 1) evalfbbin(a, b, c) -> evalfbb2in(a, b, c) [ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ b - 2 >= 0 /\ 0 >= a ] (3*b + 3*a, 1) evalfbbin(a, b, c) -> evalfbb1in(a, b, c) [ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ b - 2 >= 0 /\ a >= 1 ] (3*b + 3*a, 1) evalfbb3in(a, b, c) -> evalfbbin(a, b, c) [ b - 2 >= 0 /\ c >= 1 /\ b >= c + 1 ] (1, 1) evalfentryin(a, b, c) -> evalfbb3in(c, b, a) [ a >= 1 /\ b >= a + 1 ] (1, 1) evalfstart(a, b, c) -> evalfentryin(a, b, c) start location: evalfstart leaf cost: 3 Complexity upper bound 36*b^2 + 54*a*b + 18*a^2 + 45*b + 45*a + 5 Time: 0.530 sec (SMT: 0.494 sec)