YES(?, 52*b + 30) Initial complexity problem: 1: T: (1, 1) evalfstart(a, b, c, d, e, f) -> evalfentryin(a, b, c, d, e, f) (?, 1) evalfentryin(a, b, c, d, e, f) -> evalfbb9in(b, b, c, d, e, f) (?, 1) evalfbb9in(a, b, c, d, e, f) -> evalfbbin(a, b, c, d, e, f) [ b >= 2 ] (?, 1) evalfbb9in(a, b, c, d, e, f) -> evalfreturnin(a, b, c, d, e, f) [ 1 >= b ] (?, 1) evalfbbin(a, b, c, d, e, f) -> evalfbb6in(a, b, b - 1, a + b - 1, e, f) (?, 1) evalfbb6in(a, b, c, d, e, f) -> evalfbb8in(a, b, c, d, e, f) [ c >= d ] (?, 1) evalfbb6in(a, b, c, d, e, f) -> evalfbb7in(a, b, c, d, e, f) [ d >= c + 1 ] (?, 1) evalfbb7in(a, b, c, d, e, f) -> evalfbb1in(a, b, c, d, e, f) [ 0 >= g + 1 ] (?, 1) evalfbb7in(a, b, c, d, e, f) -> evalfbb1in(a, b, c, d, e, f) [ g >= 1 ] (?, 1) evalfbb7in(a, b, c, d, e, f) -> evalfbb8in(a, b, c, d, e, f) (?, 1) evalfbb1in(a, b, c, d, e, f) -> evalfbb3in(a, b, c, d, c, d - 1) (?, 1) evalfbb3in(a, b, c, d, e, f) -> evalfbb5in(a, b, c, d, e, f) (?, 1) evalfbb3in(a, b, c, d, e, f) -> evalfbb4in(a, b, c, d, e, f) [ 0 >= 3 ] (?, 1) evalfbb4in(a, b, c, d, e, f) -> evalfbb2in(a, b, c, d, e, f) [ 0 >= g + 1 ] (?, 1) evalfbb4in(a, b, c, d, e, f) -> evalfbb2in(a, b, c, d, e, f) [ g >= 1 ] (?, 1) evalfbb4in(a, b, c, d, e, f) -> evalfbb5in(a, b, c, d, e, f) (?, 1) evalfbb2in(a, b, c, d, e, f) -> evalfbb3in(a, b, c, d, e + 1, f - 2) (?, 1) evalfbb5in(a, b, c, d, e, f) -> evalfbb6in(a, b, e, f - 1, e, f) (?, 1) evalfbb8in(a, b, c, d, e, f) -> evalfbb9in(d - c + 1, c - 1, c, d, e, f) (?, 1) evalfreturnin(a, b, c, d, e, f) -> evalfstop(a, b, c, d, e, f) start location: evalfstart leaf cost: 0 Testing for unsatisfiable constraints removes the following transition from problem 1: evalfbb3in(a, b, c, d, e, f) -> evalfbb4in(a, b, c, d, e, f) [ 0 >= 3 ] We thus obtain the following problem: 2: T: (1, 1) evalfstart(a, b, c, d, e, f) -> evalfentryin(a, b, c, d, e, f) (?, 1) evalfentryin(a, b, c, d, e, f) -> evalfbb9in(b, b, c, d, e, f) (?, 1) evalfbb9in(a, b, c, d, e, f) -> evalfbbin(a, b, c, d, e, f) [ b >= 2 ] (?, 1) evalfbb9in(a, b, c, d, e, f) -> evalfreturnin(a, b, c, d, e, f) [ 1 >= b ] (?, 1) evalfbbin(a, b, c, d, e, f) -> evalfbb6in(a, b, b - 1, a + b - 1, e, f) (?, 1) evalfbb6in(a, b, c, d, e, f) -> evalfbb8in(a, b, c, d, e, f) [ c >= d ] (?, 1) evalfbb6in(a, b, c, d, e, f) -> evalfbb7in(a, b, c, d, e, f) [ d >= c + 1 ] (?, 1) evalfbb7in(a, b, c, d, e, f) -> evalfbb1in(a, b, c, d, e, f) [ 0 >= g + 1 ] (?, 1) evalfbb7in(a, b, c, d, e, f) -> evalfbb1in(a, b, c, d, e, f) [ g >= 1 ] (?, 1) evalfbb7in(a, b, c, d, e, f) -> evalfbb8in(a, b, c, d, e, f) (?, 1) evalfbb1in(a, b, c, d, e, f) -> evalfbb3in(a, b, c, d, c, d - 1) (?, 1) evalfbb3in(a, b, c, d, e, f) -> evalfbb5in(a, b, c, d, e, f) (?, 1) evalfbb4in(a, b, c, d, e, f) -> evalfbb2in(a, b, c, d, e, f) [ 0 >= g + 1 ] (?, 1) evalfbb4in(a, b, c, d, e, f) -> evalfbb2in(a, b, c, d, e, f) [ g >= 1 ] (?, 1) evalfbb4in(a, b, c, d, e, f) -> evalfbb5in(a, b, c, d, e, f) (?, 1) evalfbb2in(a, b, c, d, e, f) -> evalfbb3in(a, b, c, d, e + 1, f - 2) (?, 1) evalfbb5in(a, b, c, d, e, f) -> evalfbb6in(a, b, e, f - 1, e, f) (?, 1) evalfbb8in(a, b, c, d, e, f) -> evalfbb9in(d - c + 1, c - 1, c, d, e, f) (?, 1) evalfreturnin(a, b, c, d, e, f) -> evalfstop(a, b, c, d, e, f) start location: evalfstart leaf cost: 0 Repeatedly removing leaves of the complexity graph in problem 2 produces the following problem: 3: T: (1, 1) evalfstart(a, b, c, d, e, f) -> evalfentryin(a, b, c, d, e, f) (?, 1) evalfentryin(a, b, c, d, e, f) -> evalfbb9in(b, b, c, d, e, f) (?, 1) evalfbb9in(a, b, c, d, e, f) -> evalfbbin(a, b, c, d, e, f) [ b >= 2 ] (?, 1) evalfbbin(a, b, c, d, e, f) -> evalfbb6in(a, b, b - 1, a + b - 1, e, f) (?, 1) evalfbb6in(a, b, c, d, e, f) -> evalfbb8in(a, b, c, d, e, f) [ c >= d ] (?, 1) evalfbb6in(a, b, c, d, e, f) -> evalfbb7in(a, b, c, d, e, f) [ d >= c + 1 ] (?, 1) evalfbb7in(a, b, c, d, e, f) -> evalfbb1in(a, b, c, d, e, f) [ 0 >= g + 1 ] (?, 1) evalfbb7in(a, b, c, d, e, f) -> evalfbb1in(a, b, c, d, e, f) [ g >= 1 ] (?, 1) evalfbb7in(a, b, c, d, e, f) -> evalfbb8in(a, b, c, d, e, f) (?, 1) evalfbb1in(a, b, c, d, e, f) -> evalfbb3in(a, b, c, d, c, d - 1) (?, 1) evalfbb3in(a, b, c, d, e, f) -> evalfbb5in(a, b, c, d, e, f) (?, 1) evalfbb4in(a, b, c, d, e, f) -> evalfbb2in(a, b, c, d, e, f) [ 0 >= g + 1 ] (?, 1) evalfbb4in(a, b, c, d, e, f) -> evalfbb2in(a, b, c, d, e, f) [ g >= 1 ] (?, 1) evalfbb4in(a, b, c, d, e, f) -> evalfbb5in(a, b, c, d, e, f) (?, 1) evalfbb2in(a, b, c, d, e, f) -> evalfbb3in(a, b, c, d, e + 1, f - 2) (?, 1) evalfbb5in(a, b, c, d, e, f) -> evalfbb6in(a, b, e, f - 1, e, f) (?, 1) evalfbb8in(a, b, c, d, e, f) -> evalfbb9in(d - c + 1, c - 1, c, d, e, f) start location: evalfstart leaf cost: 2 Testing for reachability in the complexity graph removes the following transitions from problem 3: evalfbb4in(a, b, c, d, e, f) -> evalfbb2in(a, b, c, d, e, f) [ 0 >= g + 1 ] evalfbb4in(a, b, c, d, e, f) -> evalfbb2in(a, b, c, d, e, f) [ g >= 1 ] evalfbb4in(a, b, c, d, e, f) -> evalfbb5in(a, b, c, d, e, f) evalfbb2in(a, b, c, d, e, f) -> evalfbb3in(a, b, c, d, e + 1, f - 2) We thus obtain the following problem: 4: T: (?, 1) evalfbb5in(a, b, c, d, e, f) -> evalfbb6in(a, b, e, f - 1, e, f) (?, 1) evalfbb3in(a, b, c, d, e, f) -> evalfbb5in(a, b, c, d, e, f) (?, 1) evalfbb1in(a, b, c, d, e, f) -> evalfbb3in(a, b, c, d, c, d - 1) (?, 1) evalfbb7in(a, b, c, d, e, f) -> evalfbb8in(a, b, c, d, e, f) (?, 1) evalfbb7in(a, b, c, d, e, f) -> evalfbb1in(a, b, c, d, e, f) [ g >= 1 ] (?, 1) evalfbb7in(a, b, c, d, e, f) -> evalfbb1in(a, b, c, d, e, f) [ 0 >= g + 1 ] (?, 1) evalfbb8in(a, b, c, d, e, f) -> evalfbb9in(d - c + 1, c - 1, c, d, e, f) (?, 1) evalfbb6in(a, b, c, d, e, f) -> evalfbb7in(a, b, c, d, e, f) [ d >= c + 1 ] (?, 1) evalfbb6in(a, b, c, d, e, f) -> evalfbb8in(a, b, c, d, e, f) [ c >= d ] (?, 1) evalfbbin(a, b, c, d, e, f) -> evalfbb6in(a, b, b - 1, a + b - 1, e, f) (?, 1) evalfbb9in(a, b, c, d, e, f) -> evalfbbin(a, b, c, d, e, f) [ b >= 2 ] (?, 1) evalfentryin(a, b, c, d, e, f) -> evalfbb9in(b, b, c, d, e, f) (1, 1) evalfstart(a, b, c, d, e, f) -> evalfentryin(a, b, c, d, e, f) start location: evalfstart leaf cost: 2 Repeatedly propagating knowledge in problem 4 produces the following problem: 5: T: (?, 1) evalfbb5in(a, b, c, d, e, f) -> evalfbb6in(a, b, e, f - 1, e, f) (?, 1) evalfbb3in(a, b, c, d, e, f) -> evalfbb5in(a, b, c, d, e, f) (?, 1) evalfbb1in(a, b, c, d, e, f) -> evalfbb3in(a, b, c, d, c, d - 1) (?, 1) evalfbb7in(a, b, c, d, e, f) -> evalfbb8in(a, b, c, d, e, f) (?, 1) evalfbb7in(a, b, c, d, e, f) -> evalfbb1in(a, b, c, d, e, f) [ g >= 1 ] (?, 1) evalfbb7in(a, b, c, d, e, f) -> evalfbb1in(a, b, c, d, e, f) [ 0 >= g + 1 ] (?, 1) evalfbb8in(a, b, c, d, e, f) -> evalfbb9in(d - c + 1, c - 1, c, d, e, f) (?, 1) evalfbb6in(a, b, c, d, e, f) -> evalfbb7in(a, b, c, d, e, f) [ d >= c + 1 ] (?, 1) evalfbb6in(a, b, c, d, e, f) -> evalfbb8in(a, b, c, d, e, f) [ c >= d ] (?, 1) evalfbbin(a, b, c, d, e, f) -> evalfbb6in(a, b, b - 1, a + b - 1, e, f) (?, 1) evalfbb9in(a, b, c, d, e, f) -> evalfbbin(a, b, c, d, e, f) [ b >= 2 ] (1, 1) evalfentryin(a, b, c, d, e, f) -> evalfbb9in(b, b, c, d, e, f) (1, 1) evalfstart(a, b, c, d, e, f) -> evalfentryin(a, b, c, d, e, f) start location: evalfstart leaf cost: 2 A polynomial rank function with Pol(evalfbb5in) = 2*V_5 - 1 Pol(evalfbb6in) = 2*V_3 - 1 Pol(evalfbb3in) = 2*V_5 - 1 Pol(evalfbb1in) = 2*V_3 - 1 Pol(evalfbb7in) = 2*V_3 - 1 Pol(evalfbb8in) = 2*V_3 - 2 Pol(evalfbb9in) = 2*V_2 - 1 Pol(evalfbbin) = 2*V_2 - 2 Pol(evalfentryin) = 2*V_2 - 1 Pol(evalfstart) = 2*V_2 - 1 orients all transitions weakly and the transition evalfbb9in(a, b, c, d, e, f) -> evalfbbin(a, b, c, d, e, f) [ b >= 2 ] strictly and produces the following problem: 6: T: (?, 1) evalfbb5in(a, b, c, d, e, f) -> evalfbb6in(a, b, e, f - 1, e, f) (?, 1) evalfbb3in(a, b, c, d, e, f) -> evalfbb5in(a, b, c, d, e, f) (?, 1) evalfbb1in(a, b, c, d, e, f) -> evalfbb3in(a, b, c, d, c, d - 1) (?, 1) evalfbb7in(a, b, c, d, e, f) -> evalfbb8in(a, b, c, d, e, f) (?, 1) evalfbb7in(a, b, c, d, e, f) -> evalfbb1in(a, b, c, d, e, f) [ g >= 1 ] (?, 1) evalfbb7in(a, b, c, d, e, f) -> evalfbb1in(a, b, c, d, e, f) [ 0 >= g + 1 ] (?, 1) evalfbb8in(a, b, c, d, e, f) -> evalfbb9in(d - c + 1, c - 1, c, d, e, f) (?, 1) evalfbb6in(a, b, c, d, e, f) -> evalfbb7in(a, b, c, d, e, f) [ d >= c + 1 ] (?, 1) evalfbb6in(a, b, c, d, e, f) -> evalfbb8in(a, b, c, d, e, f) [ c >= d ] (?, 1) evalfbbin(a, b, c, d, e, f) -> evalfbb6in(a, b, b - 1, a + b - 1, e, f) (2*b + 1, 1) evalfbb9in(a, b, c, d, e, f) -> evalfbbin(a, b, c, d, e, f) [ b >= 2 ] (1, 1) evalfentryin(a, b, c, d, e, f) -> evalfbb9in(b, b, c, d, e, f) (1, 1) evalfstart(a, b, c, d, e, f) -> evalfentryin(a, b, c, d, e, f) start location: evalfstart leaf cost: 2 Repeatedly propagating knowledge in problem 6 produces the following problem: 7: T: (?, 1) evalfbb5in(a, b, c, d, e, f) -> evalfbb6in(a, b, e, f - 1, e, f) (?, 1) evalfbb3in(a, b, c, d, e, f) -> evalfbb5in(a, b, c, d, e, f) (?, 1) evalfbb1in(a, b, c, d, e, f) -> evalfbb3in(a, b, c, d, c, d - 1) (?, 1) evalfbb7in(a, b, c, d, e, f) -> evalfbb8in(a, b, c, d, e, f) (?, 1) evalfbb7in(a, b, c, d, e, f) -> evalfbb1in(a, b, c, d, e, f) [ g >= 1 ] (?, 1) evalfbb7in(a, b, c, d, e, f) -> evalfbb1in(a, b, c, d, e, f) [ 0 >= g + 1 ] (?, 1) evalfbb8in(a, b, c, d, e, f) -> evalfbb9in(d - c + 1, c - 1, c, d, e, f) (?, 1) evalfbb6in(a, b, c, d, e, f) -> evalfbb7in(a, b, c, d, e, f) [ d >= c + 1 ] (?, 1) evalfbb6in(a, b, c, d, e, f) -> evalfbb8in(a, b, c, d, e, f) [ c >= d ] (2*b + 1, 1) evalfbbin(a, b, c, d, e, f) -> evalfbb6in(a, b, b - 1, a + b - 1, e, f) (2*b + 1, 1) evalfbb9in(a, b, c, d, e, f) -> evalfbbin(a, b, c, d, e, f) [ b >= 2 ] (1, 1) evalfentryin(a, b, c, d, e, f) -> evalfbb9in(b, b, c, d, e, f) (1, 1) evalfstart(a, b, c, d, e, f) -> evalfentryin(a, b, c, d, e, f) start location: evalfstart leaf cost: 2 A polynomial rank function with Pol(evalfbb8in) = 1 Pol(evalfbb9in) = 0 Pol(evalfbb7in) = 2 Pol(evalfbb1in) = 2 Pol(evalfbb6in) = 2 Pol(evalfbb5in) = 2 Pol(evalfbb3in) = 2 and size complexities S("evalfstart(a, b, c, d, e, f) -> evalfentryin(a, b, c, d, e, f)", 0-0) = a S("evalfstart(a, b, c, d, e, f) -> evalfentryin(a, b, c, d, e, f)", 0-1) = b S("evalfstart(a, b, c, d, e, f) -> evalfentryin(a, b, c, d, e, f)", 0-2) = c S("evalfstart(a, b, c, d, e, f) -> evalfentryin(a, b, c, d, e, f)", 0-3) = d S("evalfstart(a, b, c, d, e, f) -> evalfentryin(a, b, c, d, e, f)", 0-4) = e S("evalfstart(a, b, c, d, e, f) -> evalfentryin(a, b, c, d, e, f)", 0-5) = f S("evalfentryin(a, b, c, d, e, f) -> evalfbb9in(b, b, c, d, e, f)", 0-0) = b S("evalfentryin(a, b, c, d, e, f) -> evalfbb9in(b, b, c, d, e, f)", 0-1) = b S("evalfentryin(a, b, c, d, e, f) -> evalfbb9in(b, b, c, d, e, f)", 0-2) = c S("evalfentryin(a, b, c, d, e, f) -> evalfbb9in(b, b, c, d, e, f)", 0-3) = d S("evalfentryin(a, b, c, d, e, f) -> evalfbb9in(b, b, c, d, e, f)", 0-4) = e S("evalfentryin(a, b, c, d, e, f) -> evalfbb9in(b, b, c, d, e, f)", 0-5) = f S("evalfbb9in(a, b, c, d, e, f) -> evalfbbin(a, b, c, d, e, f) [ b >= 2 ]", 0-0) = ? S("evalfbb9in(a, b, c, d, e, f) -> evalfbbin(a, b, c, d, e, f) [ b >= 2 ]", 0-1) = ? S("evalfbb9in(a, b, c, d, e, f) -> evalfbbin(a, b, c, d, e, f) [ b >= 2 ]", 0-2) = ? S("evalfbb9in(a, b, c, d, e, f) -> evalfbbin(a, b, c, d, e, f) [ b >= 2 ]", 0-3) = ? S("evalfbb9in(a, b, c, d, e, f) -> evalfbbin(a, b, c, d, e, f) [ b >= 2 ]", 0-4) = ? S("evalfbb9in(a, b, c, d, e, f) -> evalfbbin(a, b, c, d, e, f) [ b >= 2 ]", 0-5) = ? S("evalfbbin(a, b, c, d, e, f) -> evalfbb6in(a, b, b - 1, a + b - 1, e, f)", 0-0) = ? S("evalfbbin(a, b, c, d, e, f) -> evalfbb6in(a, b, b - 1, a + b - 1, e, f)", 0-1) = ? S("evalfbbin(a, b, c, d, e, f) -> evalfbb6in(a, b, b - 1, a + b - 1, e, f)", 0-2) = ? S("evalfbbin(a, b, c, d, e, f) -> evalfbb6in(a, b, b - 1, a + b - 1, e, f)", 0-3) = ? S("evalfbbin(a, b, c, d, e, f) -> evalfbb6in(a, b, b - 1, a + b - 1, e, f)", 0-4) = ? S("evalfbbin(a, b, c, d, e, f) -> evalfbb6in(a, b, b - 1, a + b - 1, e, f)", 0-5) = ? S("evalfbb6in(a, b, c, d, e, f) -> evalfbb8in(a, b, c, d, e, f) [ c >= d ]", 0-0) = ? S("evalfbb6in(a, b, c, d, e, f) -> evalfbb8in(a, b, c, d, e, f) [ c >= d ]", 0-1) = ? S("evalfbb6in(a, b, c, d, e, f) -> evalfbb8in(a, b, c, d, e, f) [ c >= d ]", 0-2) = ? S("evalfbb6in(a, b, c, d, e, f) -> evalfbb8in(a, b, c, d, e, f) [ c >= d ]", 0-3) = ? S("evalfbb6in(a, b, c, d, e, f) -> evalfbb8in(a, b, c, d, e, f) [ c >= d ]", 0-4) = ? S("evalfbb6in(a, b, c, d, e, f) -> evalfbb8in(a, b, c, d, e, f) [ c >= d ]", 0-5) = ? S("evalfbb6in(a, b, c, d, e, f) -> evalfbb7in(a, b, c, d, e, f) [ d >= c + 1 ]", 0-0) = ? S("evalfbb6in(a, b, c, d, e, f) -> evalfbb7in(a, b, c, d, e, f) [ d >= c + 1 ]", 0-1) = ? S("evalfbb6in(a, b, c, d, e, f) -> evalfbb7in(a, b, c, d, e, f) [ d >= c + 1 ]", 0-2) = ? S("evalfbb6in(a, b, c, d, e, f) -> evalfbb7in(a, b, c, d, e, f) [ d >= c + 1 ]", 0-3) = ? S("evalfbb6in(a, b, c, d, e, f) -> evalfbb7in(a, b, c, d, e, f) [ d >= c + 1 ]", 0-4) = ? S("evalfbb6in(a, b, c, d, e, f) -> evalfbb7in(a, b, c, d, e, f) [ d >= c + 1 ]", 0-5) = ? S("evalfbb8in(a, b, c, d, e, f) -> evalfbb9in(d - c + 1, c - 1, c, d, e, f)", 0-0) = ? S("evalfbb8in(a, b, c, d, e, f) -> evalfbb9in(d - c + 1, c - 1, c, d, e, f)", 0-1) = ? S("evalfbb8in(a, b, c, d, e, f) -> evalfbb9in(d - c + 1, c - 1, c, d, e, f)", 0-2) = ? S("evalfbb8in(a, b, c, d, e, f) -> evalfbb9in(d - c + 1, c - 1, c, d, e, f)", 0-3) = ? S("evalfbb8in(a, b, c, d, e, f) -> evalfbb9in(d - c + 1, c - 1, c, d, e, f)", 0-4) = ? S("evalfbb8in(a, b, c, d, e, f) -> evalfbb9in(d - c + 1, c - 1, c, d, e, f)", 0-5) = ? S("evalfbb7in(a, b, c, d, e, f) -> evalfbb1in(a, b, c, d, e, f) [ 0 >= g + 1 ]", 0-0) = ? S("evalfbb7in(a, b, c, d, e, f) -> evalfbb1in(a, b, c, d, e, f) [ 0 >= g + 1 ]", 0-1) = ? S("evalfbb7in(a, b, c, d, e, f) -> evalfbb1in(a, b, c, d, e, f) [ 0 >= g + 1 ]", 0-2) = ? S("evalfbb7in(a, b, c, d, e, f) -> evalfbb1in(a, b, c, d, e, f) [ 0 >= g + 1 ]", 0-3) = ? S("evalfbb7in(a, b, c, d, e, f) -> evalfbb1in(a, b, c, d, e, f) [ 0 >= g + 1 ]", 0-4) = ? S("evalfbb7in(a, b, c, d, e, f) -> evalfbb1in(a, b, c, d, e, f) [ 0 >= g + 1 ]", 0-5) = ? S("evalfbb7in(a, b, c, d, e, f) -> evalfbb1in(a, b, c, d, e, f) [ g >= 1 ]", 0-0) = ? S("evalfbb7in(a, b, c, d, e, f) -> evalfbb1in(a, b, c, d, e, f) [ g >= 1 ]", 0-1) = ? S("evalfbb7in(a, b, c, d, e, f) -> evalfbb1in(a, b, c, d, e, f) [ g >= 1 ]", 0-2) = ? S("evalfbb7in(a, b, c, d, e, f) -> evalfbb1in(a, b, c, d, e, f) [ g >= 1 ]", 0-3) = ? S("evalfbb7in(a, b, c, d, e, f) -> evalfbb1in(a, b, c, d, e, f) [ g >= 1 ]", 0-4) = ? S("evalfbb7in(a, b, c, d, e, f) -> evalfbb1in(a, b, c, d, e, f) [ g >= 1 ]", 0-5) = ? S("evalfbb7in(a, b, c, d, e, f) -> evalfbb8in(a, b, c, d, e, f)", 0-0) = ? S("evalfbb7in(a, b, c, d, e, f) -> evalfbb8in(a, b, c, d, e, f)", 0-1) = ? S("evalfbb7in(a, b, c, d, e, f) -> evalfbb8in(a, b, c, d, e, f)", 0-2) = ? S("evalfbb7in(a, b, c, d, e, f) -> evalfbb8in(a, b, c, d, e, f)", 0-3) = ? S("evalfbb7in(a, b, c, d, e, f) -> evalfbb8in(a, b, c, d, e, f)", 0-4) = ? S("evalfbb7in(a, b, c, d, e, f) -> evalfbb8in(a, b, c, d, e, f)", 0-5) = ? S("evalfbb1in(a, b, c, d, e, f) -> evalfbb3in(a, b, c, d, c, d - 1)", 0-0) = ? S("evalfbb1in(a, b, c, d, e, f) -> evalfbb3in(a, b, c, d, c, d - 1)", 0-1) = ? S("evalfbb1in(a, b, c, d, e, f) -> evalfbb3in(a, b, c, d, c, d - 1)", 0-2) = ? S("evalfbb1in(a, b, c, d, e, f) -> evalfbb3in(a, b, c, d, c, d - 1)", 0-3) = ? S("evalfbb1in(a, b, c, d, e, f) -> evalfbb3in(a, b, c, d, c, d - 1)", 0-4) = ? S("evalfbb1in(a, b, c, d, e, f) -> evalfbb3in(a, b, c, d, c, d - 1)", 0-5) = ? S("evalfbb3in(a, b, c, d, e, f) -> evalfbb5in(a, b, c, d, e, f)", 0-0) = ? S("evalfbb3in(a, b, c, d, e, f) -> evalfbb5in(a, b, c, d, e, f)", 0-1) = ? S("evalfbb3in(a, b, c, d, e, f) -> evalfbb5in(a, b, c, d, e, f)", 0-2) = ? S("evalfbb3in(a, b, c, d, e, f) -> evalfbb5in(a, b, c, d, e, f)", 0-3) = ? S("evalfbb3in(a, b, c, d, e, f) -> evalfbb5in(a, b, c, d, e, f)", 0-4) = ? S("evalfbb3in(a, b, c, d, e, f) -> evalfbb5in(a, b, c, d, e, f)", 0-5) = ? S("evalfbb5in(a, b, c, d, e, f) -> evalfbb6in(a, b, e, f - 1, e, f)", 0-0) = ? S("evalfbb5in(a, b, c, d, e, f) -> evalfbb6in(a, b, e, f - 1, e, f)", 0-1) = ? S("evalfbb5in(a, b, c, d, e, f) -> evalfbb6in(a, b, e, f - 1, e, f)", 0-2) = ? S("evalfbb5in(a, b, c, d, e, f) -> evalfbb6in(a, b, e, f - 1, e, f)", 0-3) = ? S("evalfbb5in(a, b, c, d, e, f) -> evalfbb6in(a, b, e, f - 1, e, f)", 0-4) = ? S("evalfbb5in(a, b, c, d, e, f) -> evalfbb6in(a, b, e, f - 1, e, f)", 0-5) = ? orients the transitions evalfbb8in(a, b, c, d, e, f) -> evalfbb9in(d - c + 1, c - 1, c, d, e, f) evalfbb7in(a, b, c, d, e, f) -> evalfbb8in(a, b, c, d, e, f) evalfbb7in(a, b, c, d, e, f) -> evalfbb1in(a, b, c, d, e, f) [ g >= 1 ] evalfbb7in(a, b, c, d, e, f) -> evalfbb1in(a, b, c, d, e, f) [ 0 >= g + 1 ] evalfbb6in(a, b, c, d, e, f) -> evalfbb8in(a, b, c, d, e, f) [ c >= d ] evalfbb6in(a, b, c, d, e, f) -> evalfbb7in(a, b, c, d, e, f) [ d >= c + 1 ] evalfbb5in(a, b, c, d, e, f) -> evalfbb6in(a, b, e, f - 1, e, f) evalfbb3in(a, b, c, d, e, f) -> evalfbb5in(a, b, c, d, e, f) evalfbb1in(a, b, c, d, e, f) -> evalfbb3in(a, b, c, d, c, d - 1) weakly and the transitions evalfbb8in(a, b, c, d, e, f) -> evalfbb9in(d - c + 1, c - 1, c, d, e, f) evalfbb7in(a, b, c, d, e, f) -> evalfbb8in(a, b, c, d, e, f) evalfbb6in(a, b, c, d, e, f) -> evalfbb8in(a, b, c, d, e, f) [ c >= d ] strictly and produces the following problem: 8: T: (?, 1) evalfbb5in(a, b, c, d, e, f) -> evalfbb6in(a, b, e, f - 1, e, f) (?, 1) evalfbb3in(a, b, c, d, e, f) -> evalfbb5in(a, b, c, d, e, f) (?, 1) evalfbb1in(a, b, c, d, e, f) -> evalfbb3in(a, b, c, d, c, d - 1) (4*b + 2, 1) evalfbb7in(a, b, c, d, e, f) -> evalfbb8in(a, b, c, d, e, f) (?, 1) evalfbb7in(a, b, c, d, e, f) -> evalfbb1in(a, b, c, d, e, f) [ g >= 1 ] (?, 1) evalfbb7in(a, b, c, d, e, f) -> evalfbb1in(a, b, c, d, e, f) [ 0 >= g + 1 ] (4*b + 2, 1) evalfbb8in(a, b, c, d, e, f) -> evalfbb9in(d - c + 1, c - 1, c, d, e, f) (?, 1) evalfbb6in(a, b, c, d, e, f) -> evalfbb7in(a, b, c, d, e, f) [ d >= c + 1 ] (4*b + 2, 1) evalfbb6in(a, b, c, d, e, f) -> evalfbb8in(a, b, c, d, e, f) [ c >= d ] (2*b + 1, 1) evalfbbin(a, b, c, d, e, f) -> evalfbb6in(a, b, b - 1, a + b - 1, e, f) (2*b + 1, 1) evalfbb9in(a, b, c, d, e, f) -> evalfbbin(a, b, c, d, e, f) [ b >= 2 ] (1, 1) evalfentryin(a, b, c, d, e, f) -> evalfbb9in(b, b, c, d, e, f) (1, 1) evalfstart(a, b, c, d, e, f) -> evalfentryin(a, b, c, d, e, f) start location: evalfstart leaf cost: 2 Applied AI with 'oct' on problem 8 to obtain the following invariants: For symbol evalfbb1in: X_4 - 2 >= 0 /\ X_3 + X_4 - 3 >= 0 /\ -X_3 + X_4 - 1 >= 0 /\ X_2 + X_4 - 4 >= 0 /\ -X_2 + X_4 >= 0 /\ X_2 - X_3 - 1 >= 0 /\ X_3 - 1 >= 0 /\ X_2 + X_3 - 3 >= 0 /\ -X_2 + X_3 + 1 >= 0 /\ X_2 - 2 >= 0 For symbol evalfbb3in: X_4 - X_6 - 1 >= 0 /\ X_6 - 1 >= 0 /\ X_5 + X_6 - 2 >= 0 /\ -X_5 + X_6 >= 0 /\ X_4 + X_6 - 3 >= 0 /\ -X_4 + X_6 + 1 >= 0 /\ X_3 + X_6 - 2 >= 0 /\ -X_3 + X_6 >= 0 /\ X_2 + X_6 - 3 >= 0 /\ -X_2 + X_6 + 1 >= 0 /\ X_4 - X_5 - 1 >= 0 /\ X_3 - X_5 >= 0 /\ X_2 - X_5 - 1 >= 0 /\ X_5 - 1 >= 0 /\ X_4 + X_5 - 3 >= 0 /\ X_3 + X_5 - 2 >= 0 /\ -X_3 + X_5 >= 0 /\ X_2 + X_5 - 3 >= 0 /\ -X_2 + X_5 + 1 >= 0 /\ X_4 - 2 >= 0 /\ X_3 + X_4 - 3 >= 0 /\ -X_3 + X_4 - 1 >= 0 /\ X_2 + X_4 - 4 >= 0 /\ -X_2 + X_4 >= 0 /\ X_2 - X_3 - 1 >= 0 /\ X_3 - 1 >= 0 /\ X_2 + X_3 - 3 >= 0 /\ -X_2 + X_3 + 1 >= 0 /\ X_2 - 2 >= 0 For symbol evalfbb5in: X_4 - X_6 - 1 >= 0 /\ X_6 - 1 >= 0 /\ X_5 + X_6 - 2 >= 0 /\ -X_5 + X_6 >= 0 /\ X_4 + X_6 - 3 >= 0 /\ -X_4 + X_6 + 1 >= 0 /\ X_3 + X_6 - 2 >= 0 /\ -X_3 + X_6 >= 0 /\ X_2 + X_6 - 3 >= 0 /\ -X_2 + X_6 + 1 >= 0 /\ X_4 - X_5 - 1 >= 0 /\ X_3 - X_5 >= 0 /\ X_2 - X_5 - 1 >= 0 /\ X_5 - 1 >= 0 /\ X_4 + X_5 - 3 >= 0 /\ X_3 + X_5 - 2 >= 0 /\ -X_3 + X_5 >= 0 /\ X_2 + X_5 - 3 >= 0 /\ -X_2 + X_5 + 1 >= 0 /\ X_4 - 2 >= 0 /\ X_3 + X_4 - 3 >= 0 /\ -X_3 + X_4 - 1 >= 0 /\ X_2 + X_4 - 4 >= 0 /\ -X_2 + X_4 >= 0 /\ X_2 - X_3 - 1 >= 0 /\ X_3 - 1 >= 0 /\ X_2 + X_3 - 3 >= 0 /\ -X_2 + X_3 + 1 >= 0 /\ X_2 - 2 >= 0 For symbol evalfbb6in: X_2 - X_3 - 1 >= 0 /\ X_3 - 1 >= 0 /\ X_2 + X_3 - 3 >= 0 /\ -X_2 + X_3 + 1 >= 0 /\ X_2 - 2 >= 0 For symbol evalfbb7in: X_4 - 2 >= 0 /\ X_3 + X_4 - 3 >= 0 /\ -X_3 + X_4 - 1 >= 0 /\ X_2 + X_4 - 4 >= 0 /\ -X_2 + X_4 >= 0 /\ X_2 - X_3 - 1 >= 0 /\ X_3 - 1 >= 0 /\ X_2 + X_3 - 3 >= 0 /\ -X_2 + X_3 + 1 >= 0 /\ X_2 - 2 >= 0 For symbol evalfbb8in: X_2 - X_3 - 1 >= 0 /\ X_3 - 1 >= 0 /\ X_2 + X_3 - 3 >= 0 /\ -X_2 + X_3 + 1 >= 0 /\ X_2 - 2 >= 0 For symbol evalfbbin: X_2 - 2 >= 0 This yielded the following problem: 9: T: (1, 1) evalfstart(a, b, c, d, e, f) -> evalfentryin(a, b, c, d, e, f) (1, 1) evalfentryin(a, b, c, d, e, f) -> evalfbb9in(b, b, c, d, e, f) (2*b + 1, 1) evalfbb9in(a, b, c, d, e, f) -> evalfbbin(a, b, c, d, e, f) [ b >= 2 ] (2*b + 1, 1) evalfbbin(a, b, c, d, e, f) -> evalfbb6in(a, b, b - 1, a + b - 1, e, f) [ b - 2 >= 0 ] (4*b + 2, 1) evalfbb6in(a, b, c, d, e, f) -> evalfbb8in(a, b, c, d, e, f) [ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ -b + c + 1 >= 0 /\ b - 2 >= 0 /\ c >= d ] (?, 1) evalfbb6in(a, b, c, d, e, f) -> evalfbb7in(a, b, c, d, e, f) [ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ -b + c + 1 >= 0 /\ b - 2 >= 0 /\ d >= c + 1 ] (4*b + 2, 1) evalfbb8in(a, b, c, d, e, f) -> evalfbb9in(d - c + 1, c - 1, c, d, e, f) [ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ -b + c + 1 >= 0 /\ b - 2 >= 0 ] (?, 1) evalfbb7in(a, b, c, d, e, f) -> evalfbb1in(a, b, c, d, e, f) [ d - 2 >= 0 /\ c + d - 3 >= 0 /\ -c + d - 1 >= 0 /\ b + d - 4 >= 0 /\ -b + d >= 0 /\ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ -b + c + 1 >= 0 /\ b - 2 >= 0 /\ 0 >= g + 1 ] (?, 1) evalfbb7in(a, b, c, d, e, f) -> evalfbb1in(a, b, c, d, e, f) [ d - 2 >= 0 /\ c + d - 3 >= 0 /\ -c + d - 1 >= 0 /\ b + d - 4 >= 0 /\ -b + d >= 0 /\ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ -b + c + 1 >= 0 /\ b - 2 >= 0 /\ g >= 1 ] (4*b + 2, 1) evalfbb7in(a, b, c, d, e, f) -> evalfbb8in(a, b, c, d, e, f) [ d - 2 >= 0 /\ c + d - 3 >= 0 /\ -c + d - 1 >= 0 /\ b + d - 4 >= 0 /\ -b + d >= 0 /\ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ -b + c + 1 >= 0 /\ b - 2 >= 0 ] (?, 1) evalfbb1in(a, b, c, d, e, f) -> evalfbb3in(a, b, c, d, c, d - 1) [ d - 2 >= 0 /\ c + d - 3 >= 0 /\ -c + d - 1 >= 0 /\ b + d - 4 >= 0 /\ -b + d >= 0 /\ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ -b + c + 1 >= 0 /\ b - 2 >= 0 ] (?, 1) evalfbb3in(a, b, c, d, e, f) -> evalfbb5in(a, b, c, d, e, f) [ d - f - 1 >= 0 /\ f - 1 >= 0 /\ e + f - 2 >= 0 /\ -e + f >= 0 /\ d + f - 3 >= 0 /\ -d + f + 1 >= 0 /\ c + f - 2 >= 0 /\ -c + f >= 0 /\ b + f - 3 >= 0 /\ -b + f + 1 >= 0 /\ d - e - 1 >= 0 /\ c - e >= 0 /\ b - e - 1 >= 0 /\ e - 1 >= 0 /\ d + e - 3 >= 0 /\ c + e - 2 >= 0 /\ -c + e >= 0 /\ b + e - 3 >= 0 /\ -b + e + 1 >= 0 /\ d - 2 >= 0 /\ c + d - 3 >= 0 /\ -c + d - 1 >= 0 /\ b + d - 4 >= 0 /\ -b + d >= 0 /\ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ -b + c + 1 >= 0 /\ b - 2 >= 0 ] (?, 1) evalfbb5in(a, b, c, d, e, f) -> evalfbb6in(a, b, e, f - 1, e, f) [ d - f - 1 >= 0 /\ f - 1 >= 0 /\ e + f - 2 >= 0 /\ -e + f >= 0 /\ d + f - 3 >= 0 /\ -d + f + 1 >= 0 /\ c + f - 2 >= 0 /\ -c + f >= 0 /\ b + f - 3 >= 0 /\ -b + f + 1 >= 0 /\ d - e - 1 >= 0 /\ c - e >= 0 /\ b - e - 1 >= 0 /\ e - 1 >= 0 /\ d + e - 3 >= 0 /\ c + e - 2 >= 0 /\ -c + e >= 0 /\ b + e - 3 >= 0 /\ -b + e + 1 >= 0 /\ d - 2 >= 0 /\ c + d - 3 >= 0 /\ -c + d - 1 >= 0 /\ b + d - 4 >= 0 /\ -b + d >= 0 /\ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ -b + c + 1 >= 0 /\ b - 2 >= 0 ] start location: evalfstart leaf cost: 2 A polynomial rank function with Pol(evalfstart) = 6*V_2 - 3 Pol(evalfentryin) = 6*V_2 - 3 Pol(evalfbb9in) = 3*V_1 + 3*V_2 - 3 Pol(evalfbbin) = 3*V_1 + 3*V_2 - 3 Pol(evalfbb6in) = 2*V_2 - 2*V_3 + 3*V_4 - 2 Pol(evalfbb8in) = V_2 - V_3 + 3*V_4 - 3 Pol(evalfbb7in) = 2*V_2 - 2*V_3 + 3*V_4 - 4 Pol(evalfbb1in) = 2*V_2 - 2*V_3 + 3*V_4 - 5 Pol(evalfbb3in) = 2*V_2 - 2*V_5 + 3*V_6 - 3 Pol(evalfbb5in) = 2*V_2 - 2*V_5 + 3*V_6 - 4 orients all transitions weakly and the transitions evalfbb7in(a, b, c, d, e, f) -> evalfbb1in(a, b, c, d, e, f) [ d - 2 >= 0 /\ c + d - 3 >= 0 /\ -c + d - 1 >= 0 /\ b + d - 4 >= 0 /\ -b + d >= 0 /\ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ -b + c + 1 >= 0 /\ b - 2 >= 0 /\ g >= 1 ] evalfbb7in(a, b, c, d, e, f) -> evalfbb1in(a, b, c, d, e, f) [ d - 2 >= 0 /\ c + d - 3 >= 0 /\ -c + d - 1 >= 0 /\ b + d - 4 >= 0 /\ -b + d >= 0 /\ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ -b + c + 1 >= 0 /\ b - 2 >= 0 /\ 0 >= g + 1 ] evalfbb6in(a, b, c, d, e, f) -> evalfbb7in(a, b, c, d, e, f) [ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ -b + c + 1 >= 0 /\ b - 2 >= 0 /\ d >= c + 1 ] evalfbb5in(a, b, c, d, e, f) -> evalfbb6in(a, b, e, f - 1, e, f) [ d - f - 1 >= 0 /\ f - 1 >= 0 /\ e + f - 2 >= 0 /\ -e + f >= 0 /\ d + f - 3 >= 0 /\ -d + f + 1 >= 0 /\ c + f - 2 >= 0 /\ -c + f >= 0 /\ b + f - 3 >= 0 /\ -b + f + 1 >= 0 /\ d - e - 1 >= 0 /\ c - e >= 0 /\ b - e - 1 >= 0 /\ e - 1 >= 0 /\ d + e - 3 >= 0 /\ c + e - 2 >= 0 /\ -c + e >= 0 /\ b + e - 3 >= 0 /\ -b + e + 1 >= 0 /\ d - 2 >= 0 /\ c + d - 3 >= 0 /\ -c + d - 1 >= 0 /\ b + d - 4 >= 0 /\ -b + d >= 0 /\ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ -b + c + 1 >= 0 /\ b - 2 >= 0 ] evalfbb3in(a, b, c, d, e, f) -> evalfbb5in(a, b, c, d, e, f) [ d - f - 1 >= 0 /\ f - 1 >= 0 /\ e + f - 2 >= 0 /\ -e + f >= 0 /\ d + f - 3 >= 0 /\ -d + f + 1 >= 0 /\ c + f - 2 >= 0 /\ -c + f >= 0 /\ b + f - 3 >= 0 /\ -b + f + 1 >= 0 /\ d - e - 1 >= 0 /\ c - e >= 0 /\ b - e - 1 >= 0 /\ e - 1 >= 0 /\ d + e - 3 >= 0 /\ c + e - 2 >= 0 /\ -c + e >= 0 /\ b + e - 3 >= 0 /\ -b + e + 1 >= 0 /\ d - 2 >= 0 /\ c + d - 3 >= 0 /\ -c + d - 1 >= 0 /\ b + d - 4 >= 0 /\ -b + d >= 0 /\ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ -b + c + 1 >= 0 /\ b - 2 >= 0 ] evalfbb1in(a, b, c, d, e, f) -> evalfbb3in(a, b, c, d, c, d - 1) [ d - 2 >= 0 /\ c + d - 3 >= 0 /\ -c + d - 1 >= 0 /\ b + d - 4 >= 0 /\ -b + d >= 0 /\ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ -b + c + 1 >= 0 /\ b - 2 >= 0 ] strictly and produces the following problem: 10: T: (1, 1) evalfstart(a, b, c, d, e, f) -> evalfentryin(a, b, c, d, e, f) (1, 1) evalfentryin(a, b, c, d, e, f) -> evalfbb9in(b, b, c, d, e, f) (2*b + 1, 1) evalfbb9in(a, b, c, d, e, f) -> evalfbbin(a, b, c, d, e, f) [ b >= 2 ] (2*b + 1, 1) evalfbbin(a, b, c, d, e, f) -> evalfbb6in(a, b, b - 1, a + b - 1, e, f) [ b - 2 >= 0 ] (4*b + 2, 1) evalfbb6in(a, b, c, d, e, f) -> evalfbb8in(a, b, c, d, e, f) [ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ -b + c + 1 >= 0 /\ b - 2 >= 0 /\ c >= d ] (6*b + 3, 1) evalfbb6in(a, b, c, d, e, f) -> evalfbb7in(a, b, c, d, e, f) [ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ -b + c + 1 >= 0 /\ b - 2 >= 0 /\ d >= c + 1 ] (4*b + 2, 1) evalfbb8in(a, b, c, d, e, f) -> evalfbb9in(d - c + 1, c - 1, c, d, e, f) [ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ -b + c + 1 >= 0 /\ b - 2 >= 0 ] (6*b + 3, 1) evalfbb7in(a, b, c, d, e, f) -> evalfbb1in(a, b, c, d, e, f) [ d - 2 >= 0 /\ c + d - 3 >= 0 /\ -c + d - 1 >= 0 /\ b + d - 4 >= 0 /\ -b + d >= 0 /\ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ -b + c + 1 >= 0 /\ b - 2 >= 0 /\ 0 >= g + 1 ] (6*b + 3, 1) evalfbb7in(a, b, c, d, e, f) -> evalfbb1in(a, b, c, d, e, f) [ d - 2 >= 0 /\ c + d - 3 >= 0 /\ -c + d - 1 >= 0 /\ b + d - 4 >= 0 /\ -b + d >= 0 /\ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ -b + c + 1 >= 0 /\ b - 2 >= 0 /\ g >= 1 ] (4*b + 2, 1) evalfbb7in(a, b, c, d, e, f) -> evalfbb8in(a, b, c, d, e, f) [ d - 2 >= 0 /\ c + d - 3 >= 0 /\ -c + d - 1 >= 0 /\ b + d - 4 >= 0 /\ -b + d >= 0 /\ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ -b + c + 1 >= 0 /\ b - 2 >= 0 ] (6*b + 3, 1) evalfbb1in(a, b, c, d, e, f) -> evalfbb3in(a, b, c, d, c, d - 1) [ d - 2 >= 0 /\ c + d - 3 >= 0 /\ -c + d - 1 >= 0 /\ b + d - 4 >= 0 /\ -b + d >= 0 /\ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ -b + c + 1 >= 0 /\ b - 2 >= 0 ] (6*b + 3, 1) evalfbb3in(a, b, c, d, e, f) -> evalfbb5in(a, b, c, d, e, f) [ d - f - 1 >= 0 /\ f - 1 >= 0 /\ e + f - 2 >= 0 /\ -e + f >= 0 /\ d + f - 3 >= 0 /\ -d + f + 1 >= 0 /\ c + f - 2 >= 0 /\ -c + f >= 0 /\ b + f - 3 >= 0 /\ -b + f + 1 >= 0 /\ d - e - 1 >= 0 /\ c - e >= 0 /\ b - e - 1 >= 0 /\ e - 1 >= 0 /\ d + e - 3 >= 0 /\ c + e - 2 >= 0 /\ -c + e >= 0 /\ b + e - 3 >= 0 /\ -b + e + 1 >= 0 /\ d - 2 >= 0 /\ c + d - 3 >= 0 /\ -c + d - 1 >= 0 /\ b + d - 4 >= 0 /\ -b + d >= 0 /\ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ -b + c + 1 >= 0 /\ b - 2 >= 0 ] (6*b + 3, 1) evalfbb5in(a, b, c, d, e, f) -> evalfbb6in(a, b, e, f - 1, e, f) [ d - f - 1 >= 0 /\ f - 1 >= 0 /\ e + f - 2 >= 0 /\ -e + f >= 0 /\ d + f - 3 >= 0 /\ -d + f + 1 >= 0 /\ c + f - 2 >= 0 /\ -c + f >= 0 /\ b + f - 3 >= 0 /\ -b + f + 1 >= 0 /\ d - e - 1 >= 0 /\ c - e >= 0 /\ b - e - 1 >= 0 /\ e - 1 >= 0 /\ d + e - 3 >= 0 /\ c + e - 2 >= 0 /\ -c + e >= 0 /\ b + e - 3 >= 0 /\ -b + e + 1 >= 0 /\ d - 2 >= 0 /\ c + d - 3 >= 0 /\ -c + d - 1 >= 0 /\ b + d - 4 >= 0 /\ -b + d >= 0 /\ b - c - 1 >= 0 /\ c - 1 >= 0 /\ b + c - 3 >= 0 /\ -b + c + 1 >= 0 /\ b - 2 >= 0 ] start location: evalfstart leaf cost: 2 Complexity upper bound 52*b + 30 Time: 1.334 sec (SMT: 1.225 sec)