MAYBE Initial complexity problem: 1: T: (?, 1) f12(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a1, b1) -> f12(a, c1, d1, e, e, g, g, a, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a1, b1) [ a >= 0 /\ c1 >= 2 ] (?, 1) f1(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a1, b1) -> f1(a, b, c, d, e, f, g, h, i, j + 1, l, c1, l, d1, j, p, q, r, s, t, u, v, w, x, y, z, a1, b1) [ i >= j + 1 /\ j >= 0 ] (1, 1) f8(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a1, b1) -> f1(a, c1, c, d, e, f, g, h, c1, 2, e1, f1, e1, n, o, d1, e1, g1, 2, t, u, v, w, x, y, z, a1, b1) [ c1 >= 2 ] (1, 1) f8(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a1, b1) -> f9(a, c1, 0, d, 0, f, g, h, n1, l1, o1, r1, q1, n, o, m1, p1, r, s, d1, e1, f1, g1, k1, s1, t1, u1, b1) [ 0 >= h1 /\ 0 >= i1 /\ 0 >= c1 /\ 0 >= j1 ] (?, 1) f1(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a1, b1) -> f12(a, c1, d1, d, k, f, g, h, g1, f1, k1, n1, m1, n, o, p, l1, r, s, t, u, v, w, x, o1, p1, a1, e1) [ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 ] (?, 1) f12(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a1, b1) -> f9(a, c1, 0, d, 0, f, g, h, i, j, k, l, m, n, o, p, q, r, s, d1, e1, f1, g1, k1, y, l1, m1, b1) [ n1 >= 2 /\ o1 >= 2 /\ a >= 0 /\ c1 >= 2 /\ e = 0 /\ c = 0 ] (1, 1) f8(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a1, b1) -> f9(a, 1, k1, d, 0, f, g, h, n1, l1, o1, r1, q1, n, o, m1, p1, r, s, c1, d1, e1, f1, g1, s1, t1, u1, b1) [ l = 0 ] start location: f8 leaf cost: 0 Slicing away variables that do not contribute to conditions from problem 1 leaves variables [a, c, e, i, j, k, l]. We thus obtain the following problem: 2: T: (1, 1) f8(a, c, e, i, j, k, l) -> f9(a, k1, 0, n1, l1, o1, r1) [ l = 0 ] (?, 1) f12(a, c, e, i, j, k, l) -> f9(a, 0, 0, i, j, k, l) [ n1 >= 2 /\ o1 >= 2 /\ a >= 0 /\ c1 >= 2 /\ e = 0 /\ c = 0 ] (?, 1) f1(a, c, e, i, j, k, l) -> f12(a, d1, k, g1, f1, k1, n1) [ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 ] (1, 1) f8(a, c, e, i, j, k, l) -> f9(a, 0, 0, n1, l1, o1, r1) [ 0 >= h1 /\ 0 >= i1 /\ 0 >= c1 /\ 0 >= j1 ] (1, 1) f8(a, c, e, i, j, k, l) -> f1(a, c, e, c1, 2, e1, f1) [ c1 >= 2 ] (?, 1) f1(a, c, e, i, j, k, l) -> f1(a, c, e, i, j + 1, l, c1) [ i >= j + 1 /\ j >= 0 ] (?, 1) f12(a, c, e, i, j, k, l) -> f12(a, d1, e, i, j, k, l) [ a >= 0 /\ c1 >= 2 ] start location: f8 leaf cost: 0 Repeatedly removing leaves of the complexity graph in problem 2 produces the following problem: 3: T: (?, 1) f1(a, c, e, i, j, k, l) -> f12(a, d1, k, g1, f1, k1, n1) [ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 ] (1, 1) f8(a, c, e, i, j, k, l) -> f1(a, c, e, c1, 2, e1, f1) [ c1 >= 2 ] (?, 1) f1(a, c, e, i, j, k, l) -> f1(a, c, e, i, j + 1, l, c1) [ i >= j + 1 /\ j >= 0 ] (?, 1) f12(a, c, e, i, j, k, l) -> f12(a, d1, e, i, j, k, l) [ a >= 0 /\ c1 >= 2 ] start location: f8 leaf cost: 3 A polynomial rank function with Pol(f1) = 1 Pol(f12) = -2 Pol(f8) = 1 orients all transitions weakly and the transition f1(a, c, e, i, j, k, l) -> f12(a, d1, k, g1, f1, k1, n1) [ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 ] strictly and produces the following problem: 4: T: (1, 1) f1(a, c, e, i, j, k, l) -> f12(a, d1, k, g1, f1, k1, n1) [ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 ] (1, 1) f8(a, c, e, i, j, k, l) -> f1(a, c, e, c1, 2, e1, f1) [ c1 >= 2 ] (?, 1) f1(a, c, e, i, j, k, l) -> f1(a, c, e, i, j + 1, l, c1) [ i >= j + 1 /\ j >= 0 ] (?, 1) f12(a, c, e, i, j, k, l) -> f12(a, d1, e, i, j, k, l) [ a >= 0 /\ c1 >= 2 ] start location: f8 leaf cost: 3 Applied AI with 'oct' on problem 4 to obtain the following invariants: For symbol f1: X_4 - X_5 >= 0 /\ X_5 - 2 >= 0 /\ X_4 + X_5 - 4 >= 0 /\ X_4 - 2 >= 0 For symbol f12: X_5 - 2 >= 0 This yielded the following problem: 5: T: (?, 1) f12(a, c, e, i, j, k, l) -> f12(a, d1, e, i, j, k, l) [ j - 2 >= 0 /\ a >= 0 /\ c1 >= 2 ] (?, 1) f1(a, c, e, i, j, k, l) -> f1(a, c, e, i, j + 1, l, c1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ i >= j + 1 /\ j >= 0 ] (1, 1) f8(a, c, e, i, j, k, l) -> f1(a, c, e, c1, 2, e1, f1) [ c1 >= 2 ] (1, 1) f1(a, c, e, i, j, k, l) -> f12(a, d1, k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 ] start location: f8 leaf cost: 3 By chaining the transition f1(a, c, e, i, j, k, l) -> f12(a, d1, k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 ] with all transitions in problem 5, the following new transition is obtained: f1(a, c, e, i, j, k, l) -> f12(a, d1', k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 ] We thus obtain the following problem: 6: T: (1, 2) f1(a, c, e, i, j, k, l) -> f12(a, d1', k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 ] (?, 1) f12(a, c, e, i, j, k, l) -> f12(a, d1, e, i, j, k, l) [ j - 2 >= 0 /\ a >= 0 /\ c1 >= 2 ] (?, 1) f1(a, c, e, i, j, k, l) -> f1(a, c, e, i, j + 1, l, c1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ i >= j + 1 /\ j >= 0 ] (1, 1) f8(a, c, e, i, j, k, l) -> f1(a, c, e, c1, 2, e1, f1) [ c1 >= 2 ] start location: f8 leaf cost: 3 By chaining the transition f1(a, c, e, i, j, k, l) -> f12(a, d1', k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 ] with all transitions in problem 6, the following new transition is obtained: f1(a, c, e, i, j, k, l) -> f12(a, d1, k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 ] We thus obtain the following problem: 7: T: (1, 3) f1(a, c, e, i, j, k, l) -> f12(a, d1, k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 ] (?, 1) f12(a, c, e, i, j, k, l) -> f12(a, d1, e, i, j, k, l) [ j - 2 >= 0 /\ a >= 0 /\ c1 >= 2 ] (?, 1) f1(a, c, e, i, j, k, l) -> f1(a, c, e, i, j + 1, l, c1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ i >= j + 1 /\ j >= 0 ] (1, 1) f8(a, c, e, i, j, k, l) -> f1(a, c, e, c1, 2, e1, f1) [ c1 >= 2 ] start location: f8 leaf cost: 3 By chaining the transition f1(a, c, e, i, j, k, l) -> f12(a, d1, k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 ] with all transitions in problem 7, the following new transition is obtained: f1(a, c, e, i, j, k, l) -> f12(a, d1', k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 /\ c1''' >= 2 ] We thus obtain the following problem: 8: T: (1, 4) f1(a, c, e, i, j, k, l) -> f12(a, d1', k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 /\ c1''' >= 2 ] (?, 1) f12(a, c, e, i, j, k, l) -> f12(a, d1, e, i, j, k, l) [ j - 2 >= 0 /\ a >= 0 /\ c1 >= 2 ] (?, 1) f1(a, c, e, i, j, k, l) -> f1(a, c, e, i, j + 1, l, c1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ i >= j + 1 /\ j >= 0 ] (1, 1) f8(a, c, e, i, j, k, l) -> f1(a, c, e, c1, 2, e1, f1) [ c1 >= 2 ] start location: f8 leaf cost: 3 By chaining the transition f1(a, c, e, i, j, k, l) -> f12(a, d1', k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 /\ c1''' >= 2 ] with all transitions in problem 8, the following new transition is obtained: f1(a, c, e, i, j, k, l) -> f12(a, d1, k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 /\ c1''' >= 2 /\ c1'''' >= 2 ] We thus obtain the following problem: 9: T: (1, 5) f1(a, c, e, i, j, k, l) -> f12(a, d1, k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 /\ c1''' >= 2 /\ c1'''' >= 2 ] (?, 1) f12(a, c, e, i, j, k, l) -> f12(a, d1, e, i, j, k, l) [ j - 2 >= 0 /\ a >= 0 /\ c1 >= 2 ] (?, 1) f1(a, c, e, i, j, k, l) -> f1(a, c, e, i, j + 1, l, c1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ i >= j + 1 /\ j >= 0 ] (1, 1) f8(a, c, e, i, j, k, l) -> f1(a, c, e, c1, 2, e1, f1) [ c1 >= 2 ] start location: f8 leaf cost: 3 By chaining the transition f1(a, c, e, i, j, k, l) -> f12(a, d1, k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 /\ c1''' >= 2 /\ c1'''' >= 2 ] with all transitions in problem 9, the following new transition is obtained: f1(a, c, e, i, j, k, l) -> f12(a, d1', k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 /\ c1''' >= 2 /\ c1'''' >= 2 /\ c1''''' >= 2 ] We thus obtain the following problem: 10: T: (1, 6) f1(a, c, e, i, j, k, l) -> f12(a, d1', k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 /\ c1''' >= 2 /\ c1'''' >= 2 /\ c1''''' >= 2 ] (?, 1) f12(a, c, e, i, j, k, l) -> f12(a, d1, e, i, j, k, l) [ j - 2 >= 0 /\ a >= 0 /\ c1 >= 2 ] (?, 1) f1(a, c, e, i, j, k, l) -> f1(a, c, e, i, j + 1, l, c1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ i >= j + 1 /\ j >= 0 ] (1, 1) f8(a, c, e, i, j, k, l) -> f1(a, c, e, c1, 2, e1, f1) [ c1 >= 2 ] start location: f8 leaf cost: 3 By chaining the transition f1(a, c, e, i, j, k, l) -> f12(a, d1', k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 /\ c1''' >= 2 /\ c1'''' >= 2 /\ c1''''' >= 2 ] with all transitions in problem 10, the following new transition is obtained: f1(a, c, e, i, j, k, l) -> f12(a, d1, k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 /\ c1''' >= 2 /\ c1'''' >= 2 /\ c1''''' >= 2 /\ c1'''''' >= 2 ] We thus obtain the following problem: 11: T: (1, 7) f1(a, c, e, i, j, k, l) -> f12(a, d1, k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 /\ c1''' >= 2 /\ c1'''' >= 2 /\ c1''''' >= 2 /\ c1'''''' >= 2 ] (?, 1) f12(a, c, e, i, j, k, l) -> f12(a, d1, e, i, j, k, l) [ j - 2 >= 0 /\ a >= 0 /\ c1 >= 2 ] (?, 1) f1(a, c, e, i, j, k, l) -> f1(a, c, e, i, j + 1, l, c1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ i >= j + 1 /\ j >= 0 ] (1, 1) f8(a, c, e, i, j, k, l) -> f1(a, c, e, c1, 2, e1, f1) [ c1 >= 2 ] start location: f8 leaf cost: 3 By chaining the transition f1(a, c, e, i, j, k, l) -> f12(a, d1, k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 /\ c1''' >= 2 /\ c1'''' >= 2 /\ c1''''' >= 2 /\ c1'''''' >= 2 ] with all transitions in problem 11, the following new transition is obtained: f1(a, c, e, i, j, k, l) -> f12(a, d1', k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 /\ c1''' >= 2 /\ c1'''' >= 2 /\ c1''''' >= 2 /\ c1'''''' >= 2 /\ c1''''''' >= 2 ] We thus obtain the following problem: 12: T: (1, 8) f1(a, c, e, i, j, k, l) -> f12(a, d1', k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 /\ c1''' >= 2 /\ c1'''' >= 2 /\ c1''''' >= 2 /\ c1'''''' >= 2 /\ c1''''''' >= 2 ] (?, 1) f12(a, c, e, i, j, k, l) -> f12(a, d1, e, i, j, k, l) [ j - 2 >= 0 /\ a >= 0 /\ c1 >= 2 ] (?, 1) f1(a, c, e, i, j, k, l) -> f1(a, c, e, i, j + 1, l, c1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ i >= j + 1 /\ j >= 0 ] (1, 1) f8(a, c, e, i, j, k, l) -> f1(a, c, e, c1, 2, e1, f1) [ c1 >= 2 ] start location: f8 leaf cost: 3 By chaining the transition f1(a, c, e, i, j, k, l) -> f12(a, d1', k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 /\ c1''' >= 2 /\ c1'''' >= 2 /\ c1''''' >= 2 /\ c1'''''' >= 2 /\ c1''''''' >= 2 ] with all transitions in problem 12, the following new transition is obtained: f1(a, c, e, i, j, k, l) -> f12(a, d1, k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 /\ c1''' >= 2 /\ c1'''' >= 2 /\ c1''''' >= 2 /\ c1'''''' >= 2 /\ c1''''''' >= 2 /\ c1'''''''' >= 2 ] We thus obtain the following problem: 13: T: (1, 9) f1(a, c, e, i, j, k, l) -> f12(a, d1, k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 /\ c1''' >= 2 /\ c1'''' >= 2 /\ c1''''' >= 2 /\ c1'''''' >= 2 /\ c1''''''' >= 2 /\ c1'''''''' >= 2 ] (?, 1) f12(a, c, e, i, j, k, l) -> f12(a, d1, e, i, j, k, l) [ j - 2 >= 0 /\ a >= 0 /\ c1 >= 2 ] (?, 1) f1(a, c, e, i, j, k, l) -> f1(a, c, e, i, j + 1, l, c1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ i >= j + 1 /\ j >= 0 ] (1, 1) f8(a, c, e, i, j, k, l) -> f1(a, c, e, c1, 2, e1, f1) [ c1 >= 2 ] start location: f8 leaf cost: 3 By chaining the transition f1(a, c, e, i, j, k, l) -> f12(a, d1, k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 /\ c1''' >= 2 /\ c1'''' >= 2 /\ c1''''' >= 2 /\ c1'''''' >= 2 /\ c1''''''' >= 2 /\ c1'''''''' >= 2 ] with all transitions in problem 13, the following new transition is obtained: f1(a, c, e, i, j, k, l) -> f12(a, d1', k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 /\ c1''' >= 2 /\ c1'''' >= 2 /\ c1''''' >= 2 /\ c1'''''' >= 2 /\ c1''''''' >= 2 /\ c1'''''''' >= 2 /\ c1''''''''' >= 2 ] We thus obtain the following problem: 14: T: (1, 10) f1(a, c, e, i, j, k, l) -> f12(a, d1', k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 /\ c1''' >= 2 /\ c1'''' >= 2 /\ c1''''' >= 2 /\ c1'''''' >= 2 /\ c1''''''' >= 2 /\ c1'''''''' >= 2 /\ c1''''''''' >= 2 ] (?, 1) f12(a, c, e, i, j, k, l) -> f12(a, d1, e, i, j, k, l) [ j - 2 >= 0 /\ a >= 0 /\ c1 >= 2 ] (?, 1) f1(a, c, e, i, j, k, l) -> f1(a, c, e, i, j + 1, l, c1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ i >= j + 1 /\ j >= 0 ] (1, 1) f8(a, c, e, i, j, k, l) -> f1(a, c, e, c1, 2, e1, f1) [ c1 >= 2 ] start location: f8 leaf cost: 3 By chaining the transition f1(a, c, e, i, j, k, l) -> f12(a, d1', k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 /\ c1''' >= 2 /\ c1'''' >= 2 /\ c1''''' >= 2 /\ c1'''''' >= 2 /\ c1''''''' >= 2 /\ c1'''''''' >= 2 /\ c1''''''''' >= 2 ] with all transitions in problem 14, the following new transition is obtained: f1(a, c, e, i, j, k, l) -> f12(a, d1, k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 /\ c1''' >= 2 /\ c1'''' >= 2 /\ c1''''' >= 2 /\ c1'''''' >= 2 /\ c1''''''' >= 2 /\ c1'''''''' >= 2 /\ c1''''''''' >= 2 /\ c1'''''''''' >= 2 ] We thus obtain the following problem: 15: T: (1, 11) f1(a, c, e, i, j, k, l) -> f12(a, d1, k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 /\ c1''' >= 2 /\ c1'''' >= 2 /\ c1''''' >= 2 /\ c1'''''' >= 2 /\ c1''''''' >= 2 /\ c1'''''''' >= 2 /\ c1''''''''' >= 2 /\ c1'''''''''' >= 2 ] (?, 1) f12(a, c, e, i, j, k, l) -> f12(a, d1, e, i, j, k, l) [ j - 2 >= 0 /\ a >= 0 /\ c1 >= 2 ] (?, 1) f1(a, c, e, i, j, k, l) -> f1(a, c, e, i, j + 1, l, c1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ i >= j + 1 /\ j >= 0 ] (1, 1) f8(a, c, e, i, j, k, l) -> f1(a, c, e, c1, 2, e1, f1) [ c1 >= 2 ] start location: f8 leaf cost: 3 By chaining the transition f1(a, c, e, i, j, k, l) -> f12(a, d1, k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 /\ c1''' >= 2 /\ c1'''' >= 2 /\ c1''''' >= 2 /\ c1'''''' >= 2 /\ c1''''''' >= 2 /\ c1'''''''' >= 2 /\ c1''''''''' >= 2 /\ c1'''''''''' >= 2 ] with all transitions in problem 15, the following new transition is obtained: f1(a, c, e, i, j, k, l) -> f12(a, d1', k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 /\ c1''' >= 2 /\ c1'''' >= 2 /\ c1''''' >= 2 /\ c1'''''' >= 2 /\ c1''''''' >= 2 /\ c1'''''''' >= 2 /\ c1''''''''' >= 2 /\ c1'''''''''' >= 2 /\ c1''''''''''' >= 2 ] We thus obtain the following problem: 16: T: (1, 12) f1(a, c, e, i, j, k, l) -> f12(a, d1', k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 /\ c1''' >= 2 /\ c1'''' >= 2 /\ c1''''' >= 2 /\ c1'''''' >= 2 /\ c1''''''' >= 2 /\ c1'''''''' >= 2 /\ c1''''''''' >= 2 /\ c1'''''''''' >= 2 /\ c1''''''''''' >= 2 ] (?, 1) f12(a, c, e, i, j, k, l) -> f12(a, d1, e, i, j, k, l) [ j - 2 >= 0 /\ a >= 0 /\ c1 >= 2 ] (?, 1) f1(a, c, e, i, j, k, l) -> f1(a, c, e, i, j + 1, l, c1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ i >= j + 1 /\ j >= 0 ] (1, 1) f8(a, c, e, i, j, k, l) -> f1(a, c, e, c1, 2, e1, f1) [ c1 >= 2 ] start location: f8 leaf cost: 3 By chaining the transition f1(a, c, e, i, j, k, l) -> f12(a, d1', k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 /\ c1''' >= 2 /\ c1'''' >= 2 /\ c1''''' >= 2 /\ c1'''''' >= 2 /\ c1''''''' >= 2 /\ c1'''''''' >= 2 /\ c1''''''''' >= 2 /\ c1'''''''''' >= 2 /\ c1''''''''''' >= 2 ] with all transitions in problem 16, the following new transition is obtained: f1(a, c, e, i, j, k, l) -> f12(a, d1, k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 /\ c1''' >= 2 /\ c1'''' >= 2 /\ c1''''' >= 2 /\ c1'''''' >= 2 /\ c1''''''' >= 2 /\ c1'''''''' >= 2 /\ c1''''''''' >= 2 /\ c1'''''''''' >= 2 /\ c1''''''''''' >= 2 /\ c1'''''''''''' >= 2 ] We thus obtain the following problem: 17: T: (1, 13) f1(a, c, e, i, j, k, l) -> f12(a, d1, k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 /\ c1''' >= 2 /\ c1'''' >= 2 /\ c1''''' >= 2 /\ c1'''''' >= 2 /\ c1''''''' >= 2 /\ c1'''''''' >= 2 /\ c1''''''''' >= 2 /\ c1'''''''''' >= 2 /\ c1''''''''''' >= 2 /\ c1'''''''''''' >= 2 ] (?, 1) f12(a, c, e, i, j, k, l) -> f12(a, d1, e, i, j, k, l) [ j - 2 >= 0 /\ a >= 0 /\ c1 >= 2 ] (?, 1) f1(a, c, e, i, j, k, l) -> f1(a, c, e, i, j + 1, l, c1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ i >= j + 1 /\ j >= 0 ] (1, 1) f8(a, c, e, i, j, k, l) -> f1(a, c, e, c1, 2, e1, f1) [ c1 >= 2 ] start location: f8 leaf cost: 3 By chaining the transition f1(a, c, e, i, j, k, l) -> f12(a, d1, k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 /\ c1''' >= 2 /\ c1'''' >= 2 /\ c1''''' >= 2 /\ c1'''''' >= 2 /\ c1''''''' >= 2 /\ c1'''''''' >= 2 /\ c1''''''''' >= 2 /\ c1'''''''''' >= 2 /\ c1''''''''''' >= 2 /\ c1'''''''''''' >= 2 ] with all transitions in problem 17, the following new transition is obtained: f1(a, c, e, i, j, k, l) -> f12(a, d1', k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 /\ c1''' >= 2 /\ c1'''' >= 2 /\ c1''''' >= 2 /\ c1'''''' >= 2 /\ c1''''''' >= 2 /\ c1'''''''' >= 2 /\ c1''''''''' >= 2 /\ c1'''''''''' >= 2 /\ c1''''''''''' >= 2 /\ c1'''''''''''' >= 2 /\ c1''''''''''''' >= 2 ] We thus obtain the following problem: 18: T: (1, 14) f1(a, c, e, i, j, k, l) -> f12(a, d1', k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 /\ c1''' >= 2 /\ c1'''' >= 2 /\ c1''''' >= 2 /\ c1'''''' >= 2 /\ c1''''''' >= 2 /\ c1'''''''' >= 2 /\ c1''''''''' >= 2 /\ c1'''''''''' >= 2 /\ c1''''''''''' >= 2 /\ c1'''''''''''' >= 2 /\ c1''''''''''''' >= 2 ] (?, 1) f12(a, c, e, i, j, k, l) -> f12(a, d1, e, i, j, k, l) [ j - 2 >= 0 /\ a >= 0 /\ c1 >= 2 ] (?, 1) f1(a, c, e, i, j, k, l) -> f1(a, c, e, i, j + 1, l, c1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ i >= j + 1 /\ j >= 0 ] (1, 1) f8(a, c, e, i, j, k, l) -> f1(a, c, e, c1, 2, e1, f1) [ c1 >= 2 ] start location: f8 leaf cost: 3 By chaining the transition f1(a, c, e, i, j, k, l) -> f12(a, d1', k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 /\ c1''' >= 2 /\ c1'''' >= 2 /\ c1''''' >= 2 /\ c1'''''' >= 2 /\ c1''''''' >= 2 /\ c1'''''''' >= 2 /\ c1''''''''' >= 2 /\ c1'''''''''' >= 2 /\ c1''''''''''' >= 2 /\ c1'''''''''''' >= 2 /\ c1''''''''''''' >= 2 ] with all transitions in problem 18, the following new transition is obtained: f1(a, c, e, i, j, k, l) -> f12(a, d1, k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 /\ c1''' >= 2 /\ c1'''' >= 2 /\ c1''''' >= 2 /\ c1'''''' >= 2 /\ c1''''''' >= 2 /\ c1'''''''' >= 2 /\ c1''''''''' >= 2 /\ c1'''''''''' >= 2 /\ c1''''''''''' >= 2 /\ c1'''''''''''' >= 2 /\ c1''''''''''''' >= 2 /\ c1'''''''''''''' >= 2 ] We thus obtain the following problem: 19: T: (1, 15) f1(a, c, e, i, j, k, l) -> f12(a, d1, k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 /\ c1''' >= 2 /\ c1'''' >= 2 /\ c1''''' >= 2 /\ c1'''''' >= 2 /\ c1''''''' >= 2 /\ c1'''''''' >= 2 /\ c1''''''''' >= 2 /\ c1'''''''''' >= 2 /\ c1''''''''''' >= 2 /\ c1'''''''''''' >= 2 /\ c1''''''''''''' >= 2 /\ c1'''''''''''''' >= 2 ] (?, 1) f12(a, c, e, i, j, k, l) -> f12(a, d1, e, i, j, k, l) [ j - 2 >= 0 /\ a >= 0 /\ c1 >= 2 ] (?, 1) f1(a, c, e, i, j, k, l) -> f1(a, c, e, i, j + 1, l, c1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ i >= j + 1 /\ j >= 0 ] (1, 1) f8(a, c, e, i, j, k, l) -> f1(a, c, e, c1, 2, e1, f1) [ c1 >= 2 ] start location: f8 leaf cost: 3 By chaining the transition f1(a, c, e, i, j, k, l) -> f12(a, d1, k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 /\ c1''' >= 2 /\ c1'''' >= 2 /\ c1''''' >= 2 /\ c1'''''' >= 2 /\ c1''''''' >= 2 /\ c1'''''''' >= 2 /\ c1''''''''' >= 2 /\ c1'''''''''' >= 2 /\ c1''''''''''' >= 2 /\ c1'''''''''''' >= 2 /\ c1''''''''''''' >= 2 /\ c1'''''''''''''' >= 2 ] with all transitions in problem 19, the following new transition is obtained: f1(a, c, e, i, j, k, l) -> f12(a, d1', k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 /\ c1''' >= 2 /\ c1'''' >= 2 /\ c1''''' >= 2 /\ c1'''''' >= 2 /\ c1''''''' >= 2 /\ c1'''''''' >= 2 /\ c1''''''''' >= 2 /\ c1'''''''''' >= 2 /\ c1''''''''''' >= 2 /\ c1'''''''''''' >= 2 /\ c1''''''''''''' >= 2 /\ c1'''''''''''''' >= 2 /\ c1''''''''''''''' >= 2 ] We thus obtain the following problem: 20: T: (1, 16) f1(a, c, e, i, j, k, l) -> f12(a, d1', k, g1, f1, k1, n1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ j >= i /\ j >= 0 /\ q1 >= 2 /\ f1 >= q1 /\ f1 >= 0 /\ c1 >= 2 /\ e1 >= c1 /\ f1 - 2 >= 0 /\ a >= 0 /\ c1' >= 2 /\ c1'' >= 2 /\ c1''' >= 2 /\ c1'''' >= 2 /\ c1''''' >= 2 /\ c1'''''' >= 2 /\ c1''''''' >= 2 /\ c1'''''''' >= 2 /\ c1''''''''' >= 2 /\ c1'''''''''' >= 2 /\ c1''''''''''' >= 2 /\ c1'''''''''''' >= 2 /\ c1''''''''''''' >= 2 /\ c1'''''''''''''' >= 2 /\ c1''''''''''''''' >= 2 ] (?, 1) f12(a, c, e, i, j, k, l) -> f12(a, d1, e, i, j, k, l) [ j - 2 >= 0 /\ a >= 0 /\ c1 >= 2 ] (?, 1) f1(a, c, e, i, j, k, l) -> f1(a, c, e, i, j + 1, l, c1) [ i - j >= 0 /\ j - 2 >= 0 /\ i + j - 4 >= 0 /\ i - 2 >= 0 /\ i >= j + 1 /\ j >= 0 ] (1, 1) f8(a, c, e, i, j, k, l) -> f1(a, c, e, c1, 2, e1, f1) [ c1 >= 2 ] start location: f8 leaf cost: 3 Complexity upper bound ? Time: 1.885 sec (SMT: 1.714 sec)