MAYBE Initial complexity problem: 1: T: (1, 1) f300(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r) -> f1(s, t, u, v, w, f, g, h, i, j, k, l, m, n, o, p, q, r) (?, 1) f1(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r) -> f1(a, b, c, d, e, f, g, 256, s, t, u, v, w, y, o, p, q, r) [ g >= f + 1 /\ x >= 1 /\ h = 256 ] (?, 1) f1(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r) -> f1(a, b, c, d, e, f, g, h, s, t, u, v, w, n, o, p, q, r) [ g >= f + 1 /\ 0 >= h ] (?, 1) f1(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r) -> f3(a, b, c, d, e, f, g, h, s, t, k, l, m, n, 0, 0, 0, r) [ f >= g ] (?, 1) f1(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r) -> f2(a, b, c, d, e, f, g, h, s, t, u, v, w, y, h, h, h, x) [ h >= 1 /\ g >= f + 1 /\ h >= 257 ] (?, 1) f1(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r) -> f2(a, b, c, d, e, f, g, h, s, t, u, v, w, y, h, h, h, x) [ h >= 1 /\ g >= f + 1 /\ 255 >= h ] start location: f300 leaf cost: 0 Slicing away variables that do not contribute to conditions from problem 1 leaves variables [f, g, h]. We thus obtain the following problem: 2: T: (?, 1) f1(f, g, h) -> f2(f, g, h) [ h >= 1 /\ g >= f + 1 /\ 255 >= h ] (?, 1) f1(f, g, h) -> f2(f, g, h) [ h >= 1 /\ g >= f + 1 /\ h >= 257 ] (?, 1) f1(f, g, h) -> f3(f, g, h) [ f >= g ] (?, 1) f1(f, g, h) -> f1(f, g, h) [ g >= f + 1 /\ 0 >= h ] (?, 1) f1(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 ] (1, 1) f300(f, g, h) -> f1(f, g, h) start location: f300 leaf cost: 0 Repeatedly removing leaves of the complexity graph in problem 2 produces the following problem: 3: T: (?, 1) f1(f, g, h) -> f1(f, g, h) [ g >= f + 1 /\ 0 >= h ] (?, 1) f1(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 ] (1, 1) f300(f, g, h) -> f1(f, g, h) start location: f300 leaf cost: 3 By chaining the transition f300(f, g, h) -> f1(f, g, h) with all transitions in problem 3, the following new transitions are obtained: f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 ] f300(f, g, h) -> f1(f, g, h) [ g >= f + 1 /\ 0 >= h ] We thus obtain the following problem: 4: T: (1, 2) f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 ] (1, 2) f300(f, g, h) -> f1(f, g, h) [ g >= f + 1 /\ 0 >= h ] (?, 1) f1(f, g, h) -> f1(f, g, h) [ g >= f + 1 /\ 0 >= h ] (?, 1) f1(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 ] start location: f300 leaf cost: 3 By chaining the transition f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 ] with all transitions in problem 4, the following new transition is obtained: f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 ] We thus obtain the following problem: 5: T: (1, 3) f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 ] (1, 2) f300(f, g, h) -> f1(f, g, h) [ g >= f + 1 /\ 0 >= h ] (?, 1) f1(f, g, h) -> f1(f, g, h) [ g >= f + 1 /\ 0 >= h ] (?, 1) f1(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 ] start location: f300 leaf cost: 3 By chaining the transition f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 ] with all transitions in problem 5, the following new transition is obtained: f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 /\ x'' >= 1 ] We thus obtain the following problem: 6: T: (1, 4) f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 /\ x'' >= 1 ] (1, 2) f300(f, g, h) -> f1(f, g, h) [ g >= f + 1 /\ 0 >= h ] (?, 1) f1(f, g, h) -> f1(f, g, h) [ g >= f + 1 /\ 0 >= h ] (?, 1) f1(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 ] start location: f300 leaf cost: 3 By chaining the transition f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 /\ x'' >= 1 ] with all transitions in problem 6, the following new transition is obtained: f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 /\ x'' >= 1 /\ x''' >= 1 ] We thus obtain the following problem: 7: T: (1, 5) f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 /\ x'' >= 1 /\ x''' >= 1 ] (1, 2) f300(f, g, h) -> f1(f, g, h) [ g >= f + 1 /\ 0 >= h ] (?, 1) f1(f, g, h) -> f1(f, g, h) [ g >= f + 1 /\ 0 >= h ] (?, 1) f1(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 ] start location: f300 leaf cost: 3 By chaining the transition f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 /\ x'' >= 1 /\ x''' >= 1 ] with all transitions in problem 7, the following new transition is obtained: f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 /\ x'' >= 1 /\ x''' >= 1 /\ x'''' >= 1 ] We thus obtain the following problem: 8: T: (1, 6) f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 /\ x'' >= 1 /\ x''' >= 1 /\ x'''' >= 1 ] (1, 2) f300(f, g, h) -> f1(f, g, h) [ g >= f + 1 /\ 0 >= h ] (?, 1) f1(f, g, h) -> f1(f, g, h) [ g >= f + 1 /\ 0 >= h ] (?, 1) f1(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 ] start location: f300 leaf cost: 3 By chaining the transition f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 /\ x'' >= 1 /\ x''' >= 1 /\ x'''' >= 1 ] with all transitions in problem 8, the following new transition is obtained: f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 /\ x'' >= 1 /\ x''' >= 1 /\ x'''' >= 1 /\ x''''' >= 1 ] We thus obtain the following problem: 9: T: (1, 7) f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 /\ x'' >= 1 /\ x''' >= 1 /\ x'''' >= 1 /\ x''''' >= 1 ] (1, 2) f300(f, g, h) -> f1(f, g, h) [ g >= f + 1 /\ 0 >= h ] (?, 1) f1(f, g, h) -> f1(f, g, h) [ g >= f + 1 /\ 0 >= h ] (?, 1) f1(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 ] start location: f300 leaf cost: 3 By chaining the transition f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 /\ x'' >= 1 /\ x''' >= 1 /\ x'''' >= 1 /\ x''''' >= 1 ] with all transitions in problem 9, the following new transition is obtained: f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 /\ x'' >= 1 /\ x''' >= 1 /\ x'''' >= 1 /\ x''''' >= 1 /\ x'''''' >= 1 ] We thus obtain the following problem: 10: T: (1, 8) f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 /\ x'' >= 1 /\ x''' >= 1 /\ x'''' >= 1 /\ x''''' >= 1 /\ x'''''' >= 1 ] (1, 2) f300(f, g, h) -> f1(f, g, h) [ g >= f + 1 /\ 0 >= h ] (?, 1) f1(f, g, h) -> f1(f, g, h) [ g >= f + 1 /\ 0 >= h ] (?, 1) f1(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 ] start location: f300 leaf cost: 3 By chaining the transition f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 /\ x'' >= 1 /\ x''' >= 1 /\ x'''' >= 1 /\ x''''' >= 1 /\ x'''''' >= 1 ] with all transitions in problem 10, the following new transition is obtained: f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 /\ x'' >= 1 /\ x''' >= 1 /\ x'''' >= 1 /\ x''''' >= 1 /\ x'''''' >= 1 /\ x''''''' >= 1 ] We thus obtain the following problem: 11: T: (1, 9) f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 /\ x'' >= 1 /\ x''' >= 1 /\ x'''' >= 1 /\ x''''' >= 1 /\ x'''''' >= 1 /\ x''''''' >= 1 ] (1, 2) f300(f, g, h) -> f1(f, g, h) [ g >= f + 1 /\ 0 >= h ] (?, 1) f1(f, g, h) -> f1(f, g, h) [ g >= f + 1 /\ 0 >= h ] (?, 1) f1(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 ] start location: f300 leaf cost: 3 By chaining the transition f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 /\ x'' >= 1 /\ x''' >= 1 /\ x'''' >= 1 /\ x''''' >= 1 /\ x'''''' >= 1 /\ x''''''' >= 1 ] with all transitions in problem 11, the following new transition is obtained: f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 /\ x'' >= 1 /\ x''' >= 1 /\ x'''' >= 1 /\ x''''' >= 1 /\ x'''''' >= 1 /\ x''''''' >= 1 /\ x'''''''' >= 1 ] We thus obtain the following problem: 12: T: (1, 10) f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 /\ x'' >= 1 /\ x''' >= 1 /\ x'''' >= 1 /\ x''''' >= 1 /\ x'''''' >= 1 /\ x''''''' >= 1 /\ x'''''''' >= 1 ] (1, 2) f300(f, g, h) -> f1(f, g, h) [ g >= f + 1 /\ 0 >= h ] (?, 1) f1(f, g, h) -> f1(f, g, h) [ g >= f + 1 /\ 0 >= h ] (?, 1) f1(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 ] start location: f300 leaf cost: 3 By chaining the transition f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 /\ x'' >= 1 /\ x''' >= 1 /\ x'''' >= 1 /\ x''''' >= 1 /\ x'''''' >= 1 /\ x''''''' >= 1 /\ x'''''''' >= 1 ] with all transitions in problem 12, the following new transition is obtained: f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 /\ x'' >= 1 /\ x''' >= 1 /\ x'''' >= 1 /\ x''''' >= 1 /\ x'''''' >= 1 /\ x''''''' >= 1 /\ x'''''''' >= 1 /\ x''''''''' >= 1 ] We thus obtain the following problem: 13: T: (1, 11) f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 /\ x'' >= 1 /\ x''' >= 1 /\ x'''' >= 1 /\ x''''' >= 1 /\ x'''''' >= 1 /\ x''''''' >= 1 /\ x'''''''' >= 1 /\ x''''''''' >= 1 ] (1, 2) f300(f, g, h) -> f1(f, g, h) [ g >= f + 1 /\ 0 >= h ] (?, 1) f1(f, g, h) -> f1(f, g, h) [ g >= f + 1 /\ 0 >= h ] (?, 1) f1(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 ] start location: f300 leaf cost: 3 By chaining the transition f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 /\ x'' >= 1 /\ x''' >= 1 /\ x'''' >= 1 /\ x''''' >= 1 /\ x'''''' >= 1 /\ x''''''' >= 1 /\ x'''''''' >= 1 /\ x''''''''' >= 1 ] with all transitions in problem 13, the following new transition is obtained: f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 /\ x'' >= 1 /\ x''' >= 1 /\ x'''' >= 1 /\ x''''' >= 1 /\ x'''''' >= 1 /\ x''''''' >= 1 /\ x'''''''' >= 1 /\ x''''''''' >= 1 /\ x'''''''''' >= 1 ] We thus obtain the following problem: 14: T: (1, 12) f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 /\ x'' >= 1 /\ x''' >= 1 /\ x'''' >= 1 /\ x''''' >= 1 /\ x'''''' >= 1 /\ x''''''' >= 1 /\ x'''''''' >= 1 /\ x''''''''' >= 1 /\ x'''''''''' >= 1 ] (1, 2) f300(f, g, h) -> f1(f, g, h) [ g >= f + 1 /\ 0 >= h ] (?, 1) f1(f, g, h) -> f1(f, g, h) [ g >= f + 1 /\ 0 >= h ] (?, 1) f1(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 ] start location: f300 leaf cost: 3 By chaining the transition f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 /\ x'' >= 1 /\ x''' >= 1 /\ x'''' >= 1 /\ x''''' >= 1 /\ x'''''' >= 1 /\ x''''''' >= 1 /\ x'''''''' >= 1 /\ x''''''''' >= 1 /\ x'''''''''' >= 1 ] with all transitions in problem 14, the following new transition is obtained: f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 /\ x'' >= 1 /\ x''' >= 1 /\ x'''' >= 1 /\ x''''' >= 1 /\ x'''''' >= 1 /\ x''''''' >= 1 /\ x'''''''' >= 1 /\ x''''''''' >= 1 /\ x'''''''''' >= 1 /\ x''''''''''' >= 1 ] We thus obtain the following problem: 15: T: (1, 13) f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 /\ x'' >= 1 /\ x''' >= 1 /\ x'''' >= 1 /\ x''''' >= 1 /\ x'''''' >= 1 /\ x''''''' >= 1 /\ x'''''''' >= 1 /\ x''''''''' >= 1 /\ x'''''''''' >= 1 /\ x''''''''''' >= 1 ] (1, 2) f300(f, g, h) -> f1(f, g, h) [ g >= f + 1 /\ 0 >= h ] (?, 1) f1(f, g, h) -> f1(f, g, h) [ g >= f + 1 /\ 0 >= h ] (?, 1) f1(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 ] start location: f300 leaf cost: 3 By chaining the transition f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 /\ x'' >= 1 /\ x''' >= 1 /\ x'''' >= 1 /\ x''''' >= 1 /\ x'''''' >= 1 /\ x''''''' >= 1 /\ x'''''''' >= 1 /\ x''''''''' >= 1 /\ x'''''''''' >= 1 /\ x''''''''''' >= 1 ] with all transitions in problem 15, the following new transition is obtained: f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 /\ x'' >= 1 /\ x''' >= 1 /\ x'''' >= 1 /\ x''''' >= 1 /\ x'''''' >= 1 /\ x''''''' >= 1 /\ x'''''''' >= 1 /\ x''''''''' >= 1 /\ x'''''''''' >= 1 /\ x''''''''''' >= 1 /\ x'''''''''''' >= 1 ] We thus obtain the following problem: 16: T: (1, 14) f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 /\ x'' >= 1 /\ x''' >= 1 /\ x'''' >= 1 /\ x''''' >= 1 /\ x'''''' >= 1 /\ x''''''' >= 1 /\ x'''''''' >= 1 /\ x''''''''' >= 1 /\ x'''''''''' >= 1 /\ x''''''''''' >= 1 /\ x'''''''''''' >= 1 ] (1, 2) f300(f, g, h) -> f1(f, g, h) [ g >= f + 1 /\ 0 >= h ] (?, 1) f1(f, g, h) -> f1(f, g, h) [ g >= f + 1 /\ 0 >= h ] (?, 1) f1(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 ] start location: f300 leaf cost: 3 By chaining the transition f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 /\ x'' >= 1 /\ x''' >= 1 /\ x'''' >= 1 /\ x''''' >= 1 /\ x'''''' >= 1 /\ x''''''' >= 1 /\ x'''''''' >= 1 /\ x''''''''' >= 1 /\ x'''''''''' >= 1 /\ x''''''''''' >= 1 /\ x'''''''''''' >= 1 ] with all transitions in problem 16, the following new transition is obtained: f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 /\ x'' >= 1 /\ x''' >= 1 /\ x'''' >= 1 /\ x''''' >= 1 /\ x'''''' >= 1 /\ x''''''' >= 1 /\ x'''''''' >= 1 /\ x''''''''' >= 1 /\ x'''''''''' >= 1 /\ x''''''''''' >= 1 /\ x'''''''''''' >= 1 /\ x''''''''''''' >= 1 ] We thus obtain the following problem: 17: T: (1, 15) f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 /\ x'' >= 1 /\ x''' >= 1 /\ x'''' >= 1 /\ x''''' >= 1 /\ x'''''' >= 1 /\ x''''''' >= 1 /\ x'''''''' >= 1 /\ x''''''''' >= 1 /\ x'''''''''' >= 1 /\ x''''''''''' >= 1 /\ x'''''''''''' >= 1 /\ x''''''''''''' >= 1 ] (1, 2) f300(f, g, h) -> f1(f, g, h) [ g >= f + 1 /\ 0 >= h ] (?, 1) f1(f, g, h) -> f1(f, g, h) [ g >= f + 1 /\ 0 >= h ] (?, 1) f1(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 ] start location: f300 leaf cost: 3 By chaining the transition f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 /\ x'' >= 1 /\ x''' >= 1 /\ x'''' >= 1 /\ x''''' >= 1 /\ x'''''' >= 1 /\ x''''''' >= 1 /\ x'''''''' >= 1 /\ x''''''''' >= 1 /\ x'''''''''' >= 1 /\ x''''''''''' >= 1 /\ x'''''''''''' >= 1 /\ x''''''''''''' >= 1 ] with all transitions in problem 17, the following new transition is obtained: f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 /\ x'' >= 1 /\ x''' >= 1 /\ x'''' >= 1 /\ x''''' >= 1 /\ x'''''' >= 1 /\ x''''''' >= 1 /\ x'''''''' >= 1 /\ x''''''''' >= 1 /\ x'''''''''' >= 1 /\ x''''''''''' >= 1 /\ x'''''''''''' >= 1 /\ x''''''''''''' >= 1 /\ x'''''''''''''' >= 1 ] We thus obtain the following problem: 18: T: (1, 16) f300(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 /\ x' >= 1 /\ 256 = 256 /\ x'' >= 1 /\ x''' >= 1 /\ x'''' >= 1 /\ x''''' >= 1 /\ x'''''' >= 1 /\ x''''''' >= 1 /\ x'''''''' >= 1 /\ x''''''''' >= 1 /\ x'''''''''' >= 1 /\ x''''''''''' >= 1 /\ x'''''''''''' >= 1 /\ x''''''''''''' >= 1 /\ x'''''''''''''' >= 1 ] (1, 2) f300(f, g, h) -> f1(f, g, h) [ g >= f + 1 /\ 0 >= h ] (?, 1) f1(f, g, h) -> f1(f, g, h) [ g >= f + 1 /\ 0 >= h ] (?, 1) f1(f, g, h) -> f1(f, g, 256) [ g >= f + 1 /\ x >= 1 /\ h = 256 ] start location: f300 leaf cost: 3 Complexity upper bound ? Time: 0.995 sec (SMT: 0.909 sec)