MAYBE Initial complexity problem: 1: T: (?, 1) f10(a, b, c, d, e) -> f16(a, 0, f, d, e) [ 0 >= a /\ f >= 1 ] (?, 1) f16(a, b, c, d, e) -> f16(a, b, c, d, e) [ c >= 1 ] (?, 1) f25(a, b, c, d, e) -> f25(a, b, c, d, e) (?, 1) f27(a, b, c, d, e) -> f30(a, b, c, d, e) (?, 1) f16(a, b, c, d, e) -> f10(f, b, c, 0, f) [ 0 >= c ] (?, 1) f10(a, b, c, d, e) -> f25(a, b, c, d, e) [ a >= 1 ] (1, 1) f0(a, b, c, d, e) -> f10(f, 0, c, 0, f) start location: f0 leaf cost: 0 Repeatedly removing leaves of the complexity graph in problem 1 produces the following problem: 2: T: (?, 1) f10(a, b, c, d, e) -> f16(a, 0, f, d, e) [ 0 >= a /\ f >= 1 ] (?, 1) f16(a, b, c, d, e) -> f16(a, b, c, d, e) [ c >= 1 ] (?, 1) f25(a, b, c, d, e) -> f25(a, b, c, d, e) (?, 1) f16(a, b, c, d, e) -> f10(f, b, c, 0, f) [ 0 >= c ] (?, 1) f10(a, b, c, d, e) -> f25(a, b, c, d, e) [ a >= 1 ] (1, 1) f0(a, b, c, d, e) -> f10(f, 0, c, 0, f) start location: f0 leaf cost: 1 Testing for reachability in the complexity graph removes the following transition from problem 2: f16(a, b, c, d, e) -> f10(f, b, c, 0, f) [ 0 >= c ] We thus obtain the following problem: 3: T: (?, 1) f25(a, b, c, d, e) -> f25(a, b, c, d, e) (?, 1) f16(a, b, c, d, e) -> f16(a, b, c, d, e) [ c >= 1 ] (?, 1) f10(a, b, c, d, e) -> f25(a, b, c, d, e) [ a >= 1 ] (?, 1) f10(a, b, c, d, e) -> f16(a, 0, f, d, e) [ 0 >= a /\ f >= 1 ] (1, 1) f0(a, b, c, d, e) -> f10(f, 0, c, 0, f) start location: f0 leaf cost: 1 Repeatedly propagating knowledge in problem 3 produces the following problem: 4: T: (?, 1) f25(a, b, c, d, e) -> f25(a, b, c, d, e) (?, 1) f16(a, b, c, d, e) -> f16(a, b, c, d, e) [ c >= 1 ] (1, 1) f10(a, b, c, d, e) -> f25(a, b, c, d, e) [ a >= 1 ] (1, 1) f10(a, b, c, d, e) -> f16(a, 0, f, d, e) [ 0 >= a /\ f >= 1 ] (1, 1) f0(a, b, c, d, e) -> f10(f, 0, c, 0, f) start location: f0 leaf cost: 1 Applied AI with 'oct' on problem 4 to obtain the following invariants: For symbol f10: -X_4 >= 0 /\ X_2 - X_4 >= 0 /\ -X_2 - X_4 >= 0 /\ X_4 >= 0 /\ X_2 + X_4 >= 0 /\ -X_2 + X_4 >= 0 /\ -X_2 >= 0 /\ X_2 >= 0 For symbol f16: -X_4 >= 0 /\ X_3 - X_4 - 1 >= 0 /\ X_2 - X_4 >= 0 /\ -X_2 - X_4 >= 0 /\ -X_1 - X_4 >= 0 /\ X_4 >= 0 /\ X_3 + X_4 - 1 >= 0 /\ X_2 + X_4 >= 0 /\ -X_2 + X_4 >= 0 /\ -X_1 + X_4 >= 0 /\ X_3 - 1 >= 0 /\ X_2 + X_3 - 1 >= 0 /\ -X_2 + X_3 - 1 >= 0 /\ -X_1 + X_3 - 1 >= 0 /\ -X_2 >= 0 /\ -X_1 - X_2 >= 0 /\ X_2 >= 0 /\ -X_1 + X_2 >= 0 /\ -X_1 >= 0 For symbol f25: -X_4 >= 0 /\ X_2 - X_4 >= 0 /\ -X_2 - X_4 >= 0 /\ X_1 - X_4 - 1 >= 0 /\ X_4 >= 0 /\ X_2 + X_4 >= 0 /\ -X_2 + X_4 >= 0 /\ X_1 + X_4 - 1 >= 0 /\ -X_2 >= 0 /\ X_1 - X_2 - 1 >= 0 /\ X_2 >= 0 /\ X_1 + X_2 - 1 >= 0 /\ X_1 - 1 >= 0 This yielded the following problem: 5: T: (1, 1) f0(a, b, c, d, e) -> f10(f, 0, c, 0, f) (1, 1) f10(a, b, c, d, e) -> f16(a, 0, f, d, e) [ -d >= 0 /\ b - d >= 0 /\ -b - d >= 0 /\ d >= 0 /\ b + d >= 0 /\ -b + d >= 0 /\ -b >= 0 /\ b >= 0 /\ 0 >= a /\ f >= 1 ] (1, 1) f10(a, b, c, d, e) -> f25(a, b, c, d, e) [ -d >= 0 /\ b - d >= 0 /\ -b - d >= 0 /\ d >= 0 /\ b + d >= 0 /\ -b + d >= 0 /\ -b >= 0 /\ b >= 0 /\ a >= 1 ] (?, 1) f16(a, b, c, d, e) -> f16(a, b, c, d, e) [ -d >= 0 /\ c - d - 1 >= 0 /\ b - d >= 0 /\ -b - d >= 0 /\ -a - d >= 0 /\ d >= 0 /\ c + d - 1 >= 0 /\ b + d >= 0 /\ -b + d >= 0 /\ -a + d >= 0 /\ c - 1 >= 0 /\ b + c - 1 >= 0 /\ -b + c - 1 >= 0 /\ -a + c - 1 >= 0 /\ -b >= 0 /\ -a - b >= 0 /\ b >= 0 /\ -a + b >= 0 /\ -a >= 0 /\ c >= 1 ] (?, 1) f25(a, b, c, d, e) -> f25(a, b, c, d, e) [ -d >= 0 /\ b - d >= 0 /\ -b - d >= 0 /\ a - d - 1 >= 0 /\ d >= 0 /\ b + d >= 0 /\ -b + d >= 0 /\ a + d - 1 >= 0 /\ -b >= 0 /\ a - b - 1 >= 0 /\ b >= 0 /\ a + b - 1 >= 0 /\ a - 1 >= 0 ] start location: f0 leaf cost: 1 By chaining the transition f10(a, b, c, d, e) -> f16(a, 0, f, d, e) [ -d >= 0 /\ b - d >= 0 /\ -b - d >= 0 /\ d >= 0 /\ b + d >= 0 /\ -b + d >= 0 /\ -b >= 0 /\ b >= 0 /\ 0 >= a /\ f >= 1 ] with all transitions in problem 5, the following new transition is obtained: f10(a, b, c, d, e) -> f16(a, 0, f, d, e) [ -d >= 0 /\ b - d >= 0 /\ -b - d >= 0 /\ d >= 0 /\ b + d >= 0 /\ -b + d >= 0 /\ -b >= 0 /\ b >= 0 /\ 0 >= a /\ f >= 1 /\ f - d - 1 >= 0 /\ -a - d >= 0 /\ f + d - 1 >= 0 /\ -a + d >= 0 /\ f - 1 >= 0 /\ -a + f - 1 >= 0 /\ 0 >= 0 /\ -a >= 0 ] We thus obtain the following problem: 6: T: (1, 2) f10(a, b, c, d, e) -> f16(a, 0, f, d, e) [ -d >= 0 /\ b - d >= 0 /\ -b - d >= 0 /\ d >= 0 /\ b + d >= 0 /\ -b + d >= 0 /\ -b >= 0 /\ b >= 0 /\ 0 >= a /\ f >= 1 /\ f - d - 1 >= 0 /\ -a - d >= 0 /\ f + d - 1 >= 0 /\ -a + d >= 0 /\ f - 1 >= 0 /\ -a + f - 1 >= 0 /\ 0 >= 0 /\ -a >= 0 ] (1, 1) f0(a, b, c, d, e) -> f10(f, 0, c, 0, f) (1, 1) f10(a, b, c, d, e) -> f25(a, b, c, d, e) [ -d >= 0 /\ b - d >= 0 /\ -b - d >= 0 /\ d >= 0 /\ b + d >= 0 /\ -b + d >= 0 /\ -b >= 0 /\ b >= 0 /\ a >= 1 ] (?, 1) f16(a, b, c, d, e) -> f16(a, b, c, d, e) [ -d >= 0 /\ c - d - 1 >= 0 /\ b - d >= 0 /\ -b - d >= 0 /\ -a - d >= 0 /\ d >= 0 /\ c + d - 1 >= 0 /\ b + d >= 0 /\ -b + d >= 0 /\ -a + d >= 0 /\ c - 1 >= 0 /\ b + c - 1 >= 0 /\ -b + c - 1 >= 0 /\ -a + c - 1 >= 0 /\ -b >= 0 /\ -a - b >= 0 /\ b >= 0 /\ -a + b >= 0 /\ -a >= 0 /\ c >= 1 ] (?, 1) f25(a, b, c, d, e) -> f25(a, b, c, d, e) [ -d >= 0 /\ b - d >= 0 /\ -b - d >= 0 /\ a - d - 1 >= 0 /\ d >= 0 /\ b + d >= 0 /\ -b + d >= 0 /\ a + d - 1 >= 0 /\ -b >= 0 /\ a - b - 1 >= 0 /\ b >= 0 /\ a + b - 1 >= 0 /\ a - 1 >= 0 ] start location: f0 leaf cost: 1 Complexity upper bound ? Time: 0.666 sec (SMT: 0.620 sec)