MAYBE Initial complexity problem: 1: T: (?, 1) f4(a, b) -> f5(a, b) [ 0 >= a + 1 ] (?, 1) f4(a, b) -> f5(a, b) [ a >= 1 ] (1, 1) f0(a, b) -> f4(c, 0) (?, 1) f5(a, b) -> f4(c, b + 1) [ 3 >= b ] (?, 1) f5(a, b) -> f4(c, b + 1) [ b >= 5 ] (?, 1) f5(a, b) -> f4(c, 1) [ b = 4 ] (?, 1) f4(a, b) -> f12(0, b) [ a = 0 ] start location: f0 leaf cost: 0 Repeatedly removing leaves of the complexity graph in problem 1 produces the following problem: 2: T: (?, 1) f4(a, b) -> f5(a, b) [ 0 >= a + 1 ] (?, 1) f4(a, b) -> f5(a, b) [ a >= 1 ] (1, 1) f0(a, b) -> f4(c, 0) (?, 1) f5(a, b) -> f4(c, b + 1) [ 3 >= b ] (?, 1) f5(a, b) -> f4(c, b + 1) [ b >= 5 ] (?, 1) f5(a, b) -> f4(c, 1) [ b = 4 ] start location: f0 leaf cost: 1 Applied AI with 'oct' on problem 2 to obtain the following invariants: For symbol f4: X_2 >= 0 For symbol f5: X_2 >= 0 This yielded the following problem: 3: T: (?, 1) f5(a, b) -> f4(c, 1) [ b >= 0 /\ b = 4 ] (?, 1) f5(a, b) -> f4(c, b + 1) [ b >= 0 /\ b >= 5 ] (?, 1) f5(a, b) -> f4(c, b + 1) [ b >= 0 /\ 3 >= b ] (1, 1) f0(a, b) -> f4(c, 0) (?, 1) f4(a, b) -> f5(a, b) [ b >= 0 /\ a >= 1 ] (?, 1) f4(a, b) -> f5(a, b) [ b >= 0 /\ 0 >= a + 1 ] start location: f0 leaf cost: 1 By chaining the transition f5(a, b) -> f4(c, 1) [ b >= 0 /\ b = 4 ] with all transitions in problem 3, the following new transitions are obtained: f5(a, b) -> f5(c, 1) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ 0 >= c + 1 ] f5(a, b) -> f5(c, 1) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 ] We thus obtain the following problem: 4: T: (?, 2) f5(a, b) -> f5(c, 1) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ 0 >= c + 1 ] (?, 2) f5(a, b) -> f5(c, 1) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 ] (?, 1) f5(a, b) -> f4(c, b + 1) [ b >= 0 /\ b >= 5 ] (?, 1) f5(a, b) -> f4(c, b + 1) [ b >= 0 /\ 3 >= b ] (1, 1) f0(a, b) -> f4(c, 0) (?, 1) f4(a, b) -> f5(a, b) [ b >= 0 /\ a >= 1 ] (?, 1) f4(a, b) -> f5(a, b) [ b >= 0 /\ 0 >= a + 1 ] start location: f0 leaf cost: 1 By chaining the transition f5(a, b) -> f5(c, 1) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ 0 >= c + 1 ] with all transitions in problem 4, the following new transition is obtained: f5(a, b) -> f4(c', 2) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ 0 >= c + 1 /\ 3 >= 1 ] We thus obtain the following problem: 5: T: (?, 3) f5(a, b) -> f4(c', 2) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ 0 >= c + 1 /\ 3 >= 1 ] (?, 2) f5(a, b) -> f5(c, 1) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 ] (?, 1) f5(a, b) -> f4(c, b + 1) [ b >= 0 /\ b >= 5 ] (?, 1) f5(a, b) -> f4(c, b + 1) [ b >= 0 /\ 3 >= b ] (1, 1) f0(a, b) -> f4(c, 0) (?, 1) f4(a, b) -> f5(a, b) [ b >= 0 /\ a >= 1 ] (?, 1) f4(a, b) -> f5(a, b) [ b >= 0 /\ 0 >= a + 1 ] start location: f0 leaf cost: 1 By chaining the transition f5(a, b) -> f5(c, 1) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 ] with all transitions in problem 5, the following new transition is obtained: f5(a, b) -> f4(c', 2) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 ] We thus obtain the following problem: 6: T: (?, 3) f5(a, b) -> f4(c', 2) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 ] (?, 3) f5(a, b) -> f4(c', 2) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ 0 >= c + 1 /\ 3 >= 1 ] (?, 1) f5(a, b) -> f4(c, b + 1) [ b >= 0 /\ b >= 5 ] (?, 1) f5(a, b) -> f4(c, b + 1) [ b >= 0 /\ 3 >= b ] (1, 1) f0(a, b) -> f4(c, 0) (?, 1) f4(a, b) -> f5(a, b) [ b >= 0 /\ a >= 1 ] (?, 1) f4(a, b) -> f5(a, b) [ b >= 0 /\ 0 >= a + 1 ] start location: f0 leaf cost: 1 By chaining the transition f5(a, b) -> f4(c', 2) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 ] with all transitions in problem 6, the following new transitions are obtained: f5(a, b) -> f5(c', 2) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ 0 >= c' + 1 ] f5(a, b) -> f5(c', 2) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 ] We thus obtain the following problem: 7: T: (?, 4) f5(a, b) -> f5(c', 2) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ 0 >= c' + 1 ] (?, 4) f5(a, b) -> f5(c', 2) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 ] (?, 3) f5(a, b) -> f4(c', 2) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ 0 >= c + 1 /\ 3 >= 1 ] (?, 1) f5(a, b) -> f4(c, b + 1) [ b >= 0 /\ b >= 5 ] (?, 1) f5(a, b) -> f4(c, b + 1) [ b >= 0 /\ 3 >= b ] (1, 1) f0(a, b) -> f4(c, 0) (?, 1) f4(a, b) -> f5(a, b) [ b >= 0 /\ a >= 1 ] (?, 1) f4(a, b) -> f5(a, b) [ b >= 0 /\ 0 >= a + 1 ] start location: f0 leaf cost: 1 By chaining the transition f5(a, b) -> f5(c', 2) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ 0 >= c' + 1 ] with all transitions in problem 7, the following new transition is obtained: f5(a, b) -> f4(c'', 3) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ 0 >= c' + 1 /\ 3 >= 2 ] We thus obtain the following problem: 8: T: (?, 5) f5(a, b) -> f4(c'', 3) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ 0 >= c' + 1 /\ 3 >= 2 ] (?, 4) f5(a, b) -> f5(c', 2) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 ] (?, 3) f5(a, b) -> f4(c', 2) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ 0 >= c + 1 /\ 3 >= 1 ] (?, 1) f5(a, b) -> f4(c, b + 1) [ b >= 0 /\ b >= 5 ] (?, 1) f5(a, b) -> f4(c, b + 1) [ b >= 0 /\ 3 >= b ] (1, 1) f0(a, b) -> f4(c, 0) (?, 1) f4(a, b) -> f5(a, b) [ b >= 0 /\ a >= 1 ] (?, 1) f4(a, b) -> f5(a, b) [ b >= 0 /\ 0 >= a + 1 ] start location: f0 leaf cost: 1 By chaining the transition f5(a, b) -> f5(c', 2) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 ] with all transitions in problem 8, the following new transition is obtained: f5(a, b) -> f4(c'', 3) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 ] We thus obtain the following problem: 9: T: (?, 5) f5(a, b) -> f4(c'', 3) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 ] (?, 5) f5(a, b) -> f4(c'', 3) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ 0 >= c' + 1 /\ 3 >= 2 ] (?, 3) f5(a, b) -> f4(c', 2) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ 0 >= c + 1 /\ 3 >= 1 ] (?, 1) f5(a, b) -> f4(c, b + 1) [ b >= 0 /\ b >= 5 ] (?, 1) f5(a, b) -> f4(c, b + 1) [ b >= 0 /\ 3 >= b ] (1, 1) f0(a, b) -> f4(c, 0) (?, 1) f4(a, b) -> f5(a, b) [ b >= 0 /\ a >= 1 ] (?, 1) f4(a, b) -> f5(a, b) [ b >= 0 /\ 0 >= a + 1 ] start location: f0 leaf cost: 1 By chaining the transition f5(a, b) -> f4(c'', 3) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 ] with all transitions in problem 9, the following new transitions are obtained: f5(a, b) -> f5(c'', 3) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ 0 >= c'' + 1 ] f5(a, b) -> f5(c'', 3) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ c'' >= 1 ] We thus obtain the following problem: 10: T: (?, 6) f5(a, b) -> f5(c'', 3) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ 0 >= c'' + 1 ] (?, 6) f5(a, b) -> f5(c'', 3) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ c'' >= 1 ] (?, 5) f5(a, b) -> f4(c'', 3) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ 0 >= c' + 1 /\ 3 >= 2 ] (?, 3) f5(a, b) -> f4(c', 2) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ 0 >= c + 1 /\ 3 >= 1 ] (?, 1) f5(a, b) -> f4(c, b + 1) [ b >= 0 /\ b >= 5 ] (?, 1) f5(a, b) -> f4(c, b + 1) [ b >= 0 /\ 3 >= b ] (1, 1) f0(a, b) -> f4(c, 0) (?, 1) f4(a, b) -> f5(a, b) [ b >= 0 /\ a >= 1 ] (?, 1) f4(a, b) -> f5(a, b) [ b >= 0 /\ 0 >= a + 1 ] start location: f0 leaf cost: 1 By chaining the transition f5(a, b) -> f5(c'', 3) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ 0 >= c'' + 1 ] with all transitions in problem 10, the following new transition is obtained: f5(a, b) -> f4(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ 0 >= c'' + 1 /\ 3 >= 3 ] We thus obtain the following problem: 11: T: (?, 7) f5(a, b) -> f4(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ 0 >= c'' + 1 /\ 3 >= 3 ] (?, 6) f5(a, b) -> f5(c'', 3) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ c'' >= 1 ] (?, 5) f5(a, b) -> f4(c'', 3) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ 0 >= c' + 1 /\ 3 >= 2 ] (?, 3) f5(a, b) -> f4(c', 2) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ 0 >= c + 1 /\ 3 >= 1 ] (?, 1) f5(a, b) -> f4(c, b + 1) [ b >= 0 /\ b >= 5 ] (?, 1) f5(a, b) -> f4(c, b + 1) [ b >= 0 /\ 3 >= b ] (1, 1) f0(a, b) -> f4(c, 0) (?, 1) f4(a, b) -> f5(a, b) [ b >= 0 /\ a >= 1 ] (?, 1) f4(a, b) -> f5(a, b) [ b >= 0 /\ 0 >= a + 1 ] start location: f0 leaf cost: 1 By chaining the transition f5(a, b) -> f5(c'', 3) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ c'' >= 1 ] with all transitions in problem 11, the following new transition is obtained: f5(a, b) -> f4(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ c'' >= 1 /\ 3 >= 3 ] We thus obtain the following problem: 12: T: (?, 7) f5(a, b) -> f4(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ c'' >= 1 /\ 3 >= 3 ] (?, 7) f5(a, b) -> f4(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ 0 >= c'' + 1 /\ 3 >= 3 ] (?, 5) f5(a, b) -> f4(c'', 3) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ 0 >= c' + 1 /\ 3 >= 2 ] (?, 3) f5(a, b) -> f4(c', 2) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ 0 >= c + 1 /\ 3 >= 1 ] (?, 1) f5(a, b) -> f4(c, b + 1) [ b >= 0 /\ b >= 5 ] (?, 1) f5(a, b) -> f4(c, b + 1) [ b >= 0 /\ 3 >= b ] (1, 1) f0(a, b) -> f4(c, 0) (?, 1) f4(a, b) -> f5(a, b) [ b >= 0 /\ a >= 1 ] (?, 1) f4(a, b) -> f5(a, b) [ b >= 0 /\ 0 >= a + 1 ] start location: f0 leaf cost: 1 By chaining the transition f5(a, b) -> f4(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ c'' >= 1 /\ 3 >= 3 ] with all transitions in problem 12, the following new transitions are obtained: f5(a, b) -> f5(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ c'' >= 1 /\ 3 >= 3 /\ 4 >= 0 /\ 0 >= c''' + 1 ] f5(a, b) -> f5(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ c'' >= 1 /\ 3 >= 3 /\ 4 >= 0 /\ c''' >= 1 ] We thus obtain the following problem: 13: T: (?, 8) f5(a, b) -> f5(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ c'' >= 1 /\ 3 >= 3 /\ 4 >= 0 /\ 0 >= c''' + 1 ] (?, 8) f5(a, b) -> f5(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ c'' >= 1 /\ 3 >= 3 /\ 4 >= 0 /\ c''' >= 1 ] (?, 7) f5(a, b) -> f4(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ 0 >= c'' + 1 /\ 3 >= 3 ] (?, 5) f5(a, b) -> f4(c'', 3) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ 0 >= c' + 1 /\ 3 >= 2 ] (?, 3) f5(a, b) -> f4(c', 2) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ 0 >= c + 1 /\ 3 >= 1 ] (?, 1) f5(a, b) -> f4(c, b + 1) [ b >= 0 /\ b >= 5 ] (?, 1) f5(a, b) -> f4(c, b + 1) [ b >= 0 /\ 3 >= b ] (1, 1) f0(a, b) -> f4(c, 0) (?, 1) f4(a, b) -> f5(a, b) [ b >= 0 /\ a >= 1 ] (?, 1) f4(a, b) -> f5(a, b) [ b >= 0 /\ 0 >= a + 1 ] start location: f0 leaf cost: 1 By chaining the transition f5(a, b) -> f4(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ 0 >= c'' + 1 /\ 3 >= 3 ] with all transitions in problem 13, the following new transitions are obtained: f5(a, b) -> f5(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ 0 >= c'' + 1 /\ 3 >= 3 /\ 4 >= 0 /\ 0 >= c''' + 1 ] f5(a, b) -> f5(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ 0 >= c'' + 1 /\ 3 >= 3 /\ 4 >= 0 /\ c''' >= 1 ] We thus obtain the following problem: 14: T: (?, 8) f5(a, b) -> f5(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ 0 >= c'' + 1 /\ 3 >= 3 /\ 4 >= 0 /\ 0 >= c''' + 1 ] (?, 8) f5(a, b) -> f5(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ 0 >= c'' + 1 /\ 3 >= 3 /\ 4 >= 0 /\ c''' >= 1 ] (?, 8) f5(a, b) -> f5(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ c'' >= 1 /\ 3 >= 3 /\ 4 >= 0 /\ 0 >= c''' + 1 ] (?, 8) f5(a, b) -> f5(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ c'' >= 1 /\ 3 >= 3 /\ 4 >= 0 /\ c''' >= 1 ] (?, 5) f5(a, b) -> f4(c'', 3) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ 0 >= c' + 1 /\ 3 >= 2 ] (?, 3) f5(a, b) -> f4(c', 2) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ 0 >= c + 1 /\ 3 >= 1 ] (?, 1) f5(a, b) -> f4(c, b + 1) [ b >= 0 /\ b >= 5 ] (?, 1) f5(a, b) -> f4(c, b + 1) [ b >= 0 /\ 3 >= b ] (1, 1) f0(a, b) -> f4(c, 0) (?, 1) f4(a, b) -> f5(a, b) [ b >= 0 /\ a >= 1 ] (?, 1) f4(a, b) -> f5(a, b) [ b >= 0 /\ 0 >= a + 1 ] start location: f0 leaf cost: 1 By chaining the transition f5(a, b) -> f4(c'', 3) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ 0 >= c' + 1 /\ 3 >= 2 ] with all transitions in problem 14, the following new transitions are obtained: f5(a, b) -> f5(c'', 3) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ 0 >= c' + 1 /\ 3 >= 2 /\ 3 >= 0 /\ 0 >= c'' + 1 ] f5(a, b) -> f5(c'', 3) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ 0 >= c' + 1 /\ 3 >= 2 /\ 3 >= 0 /\ c'' >= 1 ] We thus obtain the following problem: 15: T: (?, 6) f5(a, b) -> f5(c'', 3) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ 0 >= c' + 1 /\ 3 >= 2 /\ 3 >= 0 /\ 0 >= c'' + 1 ] (?, 6) f5(a, b) -> f5(c'', 3) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ 0 >= c' + 1 /\ 3 >= 2 /\ 3 >= 0 /\ c'' >= 1 ] (?, 8) f5(a, b) -> f5(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ 0 >= c'' + 1 /\ 3 >= 3 /\ 4 >= 0 /\ 0 >= c''' + 1 ] (?, 8) f5(a, b) -> f5(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ 0 >= c'' + 1 /\ 3 >= 3 /\ 4 >= 0 /\ c''' >= 1 ] (?, 8) f5(a, b) -> f5(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ c'' >= 1 /\ 3 >= 3 /\ 4 >= 0 /\ 0 >= c''' + 1 ] (?, 8) f5(a, b) -> f5(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ c'' >= 1 /\ 3 >= 3 /\ 4 >= 0 /\ c''' >= 1 ] (?, 3) f5(a, b) -> f4(c', 2) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ 0 >= c + 1 /\ 3 >= 1 ] (?, 1) f5(a, b) -> f4(c, b + 1) [ b >= 0 /\ b >= 5 ] (?, 1) f5(a, b) -> f4(c, b + 1) [ b >= 0 /\ 3 >= b ] (1, 1) f0(a, b) -> f4(c, 0) (?, 1) f4(a, b) -> f5(a, b) [ b >= 0 /\ a >= 1 ] (?, 1) f4(a, b) -> f5(a, b) [ b >= 0 /\ 0 >= a + 1 ] start location: f0 leaf cost: 1 By chaining the transition f5(a, b) -> f5(c'', 3) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ 0 >= c' + 1 /\ 3 >= 2 /\ 3 >= 0 /\ 0 >= c'' + 1 ] with all transitions in problem 15, the following new transition is obtained: f5(a, b) -> f4(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ 0 >= c' + 1 /\ 3 >= 2 /\ 3 >= 0 /\ 0 >= c'' + 1 /\ 3 >= 3 ] We thus obtain the following problem: 16: T: (?, 7) f5(a, b) -> f4(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ 0 >= c' + 1 /\ 3 >= 2 /\ 3 >= 0 /\ 0 >= c'' + 1 /\ 3 >= 3 ] (?, 6) f5(a, b) -> f5(c'', 3) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ 0 >= c' + 1 /\ 3 >= 2 /\ 3 >= 0 /\ c'' >= 1 ] (?, 8) f5(a, b) -> f5(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ 0 >= c'' + 1 /\ 3 >= 3 /\ 4 >= 0 /\ 0 >= c''' + 1 ] (?, 8) f5(a, b) -> f5(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ 0 >= c'' + 1 /\ 3 >= 3 /\ 4 >= 0 /\ c''' >= 1 ] (?, 8) f5(a, b) -> f5(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ c'' >= 1 /\ 3 >= 3 /\ 4 >= 0 /\ 0 >= c''' + 1 ] (?, 8) f5(a, b) -> f5(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ c'' >= 1 /\ 3 >= 3 /\ 4 >= 0 /\ c''' >= 1 ] (?, 3) f5(a, b) -> f4(c', 2) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ 0 >= c + 1 /\ 3 >= 1 ] (?, 1) f5(a, b) -> f4(c, b + 1) [ b >= 0 /\ b >= 5 ] (?, 1) f5(a, b) -> f4(c, b + 1) [ b >= 0 /\ 3 >= b ] (1, 1) f0(a, b) -> f4(c, 0) (?, 1) f4(a, b) -> f5(a, b) [ b >= 0 /\ a >= 1 ] (?, 1) f4(a, b) -> f5(a, b) [ b >= 0 /\ 0 >= a + 1 ] start location: f0 leaf cost: 1 By chaining the transition f5(a, b) -> f5(c'', 3) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ 0 >= c' + 1 /\ 3 >= 2 /\ 3 >= 0 /\ c'' >= 1 ] with all transitions in problem 16, the following new transition is obtained: f5(a, b) -> f4(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ 0 >= c' + 1 /\ 3 >= 2 /\ 3 >= 0 /\ c'' >= 1 /\ 3 >= 3 ] We thus obtain the following problem: 17: T: (?, 7) f5(a, b) -> f4(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ 0 >= c' + 1 /\ 3 >= 2 /\ 3 >= 0 /\ c'' >= 1 /\ 3 >= 3 ] (?, 7) f5(a, b) -> f4(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ 0 >= c' + 1 /\ 3 >= 2 /\ 3 >= 0 /\ 0 >= c'' + 1 /\ 3 >= 3 ] (?, 8) f5(a, b) -> f5(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ 0 >= c'' + 1 /\ 3 >= 3 /\ 4 >= 0 /\ 0 >= c''' + 1 ] (?, 8) f5(a, b) -> f5(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ 0 >= c'' + 1 /\ 3 >= 3 /\ 4 >= 0 /\ c''' >= 1 ] (?, 8) f5(a, b) -> f5(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ c'' >= 1 /\ 3 >= 3 /\ 4 >= 0 /\ 0 >= c''' + 1 ] (?, 8) f5(a, b) -> f5(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ c'' >= 1 /\ 3 >= 3 /\ 4 >= 0 /\ c''' >= 1 ] (?, 3) f5(a, b) -> f4(c', 2) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ 0 >= c + 1 /\ 3 >= 1 ] (?, 1) f5(a, b) -> f4(c, b + 1) [ b >= 0 /\ b >= 5 ] (?, 1) f5(a, b) -> f4(c, b + 1) [ b >= 0 /\ 3 >= b ] (1, 1) f0(a, b) -> f4(c, 0) (?, 1) f4(a, b) -> f5(a, b) [ b >= 0 /\ a >= 1 ] (?, 1) f4(a, b) -> f5(a, b) [ b >= 0 /\ 0 >= a + 1 ] start location: f0 leaf cost: 1 By chaining the transition f5(a, b) -> f4(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ 0 >= c' + 1 /\ 3 >= 2 /\ 3 >= 0 /\ c'' >= 1 /\ 3 >= 3 ] with all transitions in problem 17, the following new transitions are obtained: f5(a, b) -> f5(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ 0 >= c' + 1 /\ 3 >= 2 /\ 3 >= 0 /\ c'' >= 1 /\ 3 >= 3 /\ 4 >= 0 /\ 0 >= c''' + 1 ] f5(a, b) -> f5(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ 0 >= c' + 1 /\ 3 >= 2 /\ 3 >= 0 /\ c'' >= 1 /\ 3 >= 3 /\ 4 >= 0 /\ c''' >= 1 ] We thus obtain the following problem: 18: T: (?, 8) f5(a, b) -> f5(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ 0 >= c' + 1 /\ 3 >= 2 /\ 3 >= 0 /\ c'' >= 1 /\ 3 >= 3 /\ 4 >= 0 /\ 0 >= c''' + 1 ] (?, 8) f5(a, b) -> f5(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ 0 >= c' + 1 /\ 3 >= 2 /\ 3 >= 0 /\ c'' >= 1 /\ 3 >= 3 /\ 4 >= 0 /\ c''' >= 1 ] (?, 7) f5(a, b) -> f4(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ 0 >= c' + 1 /\ 3 >= 2 /\ 3 >= 0 /\ 0 >= c'' + 1 /\ 3 >= 3 ] (?, 8) f5(a, b) -> f5(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ 0 >= c'' + 1 /\ 3 >= 3 /\ 4 >= 0 /\ 0 >= c''' + 1 ] (?, 8) f5(a, b) -> f5(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ 0 >= c'' + 1 /\ 3 >= 3 /\ 4 >= 0 /\ c''' >= 1 ] (?, 8) f5(a, b) -> f5(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ c'' >= 1 /\ 3 >= 3 /\ 4 >= 0 /\ 0 >= c''' + 1 ] (?, 8) f5(a, b) -> f5(c''', 4) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ c >= 1 /\ 3 >= 1 /\ 2 >= 0 /\ c' >= 1 /\ 3 >= 2 /\ 3 >= 0 /\ c'' >= 1 /\ 3 >= 3 /\ 4 >= 0 /\ c''' >= 1 ] (?, 3) f5(a, b) -> f4(c', 2) [ b >= 0 /\ b = 4 /\ 1 >= 0 /\ 0 >= c + 1 /\ 3 >= 1 ] (?, 1) f5(a, b) -> f4(c, b + 1) [ b >= 0 /\ b >= 5 ] (?, 1) f5(a, b) -> f4(c, b + 1) [ b >= 0 /\ 3 >= b ] (1, 1) f0(a, b) -> f4(c, 0) (?, 1) f4(a, b) -> f5(a, b) [ b >= 0 /\ a >= 1 ] (?, 1) f4(a, b) -> f5(a, b) [ b >= 0 /\ 0 >= a + 1 ] start location: f0 leaf cost: 1 Complexity upper bound ? Time: 1.999 sec (SMT: 1.813 sec)