MAYBE Initial complexity problem: 1: T: (?, 1) f4(a, b, c, d, e) -> f5(a, 1, c, d, e) [ a >= 2 ] (?, 1) f4(a, b, c, d, e) -> f5(a, 0, c, d, e) [ 1 >= a ] (1, 1) f30(a, b, c, d, e) -> f4(2, b, 2, f, e) (?, 1) f5(a, b, c, d, e) -> f4(a - 1, b, c, f, e) [ 0 >= f /\ f >= 1 ] (?, 1) f5(a, b, c, d, e) -> f4(a + 1, b, c, f, e) [ f >= 1 ] (?, 1) f5(a, b, c, d, e) -> f3(a, b, c, d, 0) [ 0 >= b ] start location: f30 leaf cost: 0 Testing for unsatisfiable constraints removes the following transition from problem 1: f5(a, b, c, d, e) -> f4(a - 1, b, c, f, e) [ 0 >= f /\ f >= 1 ] We thus obtain the following problem: 2: T: (?, 1) f4(a, b, c, d, e) -> f5(a, 1, c, d, e) [ a >= 2 ] (?, 1) f4(a, b, c, d, e) -> f5(a, 0, c, d, e) [ 1 >= a ] (1, 1) f30(a, b, c, d, e) -> f4(2, b, 2, f, e) (?, 1) f5(a, b, c, d, e) -> f4(a + 1, b, c, f, e) [ f >= 1 ] (?, 1) f5(a, b, c, d, e) -> f3(a, b, c, d, 0) [ 0 >= b ] start location: f30 leaf cost: 0 Repeatedly removing leaves of the complexity graph in problem 2 produces the following problem: 3: T: (?, 1) f4(a, b, c, d, e) -> f5(a, 1, c, d, e) [ a >= 2 ] (?, 1) f4(a, b, c, d, e) -> f5(a, 0, c, d, e) [ 1 >= a ] (1, 1) f30(a, b, c, d, e) -> f4(2, b, 2, f, e) (?, 1) f5(a, b, c, d, e) -> f4(a + 1, b, c, f, e) [ f >= 1 ] start location: f30 leaf cost: 1 A polynomial rank function with Pol(f4) = -3*V_1 + 4 Pol(f5) = -3*V_1 + 3 Pol(f30) = -2 orients all transitions weakly and the transition f4(a, b, c, d, e) -> f5(a, 0, c, d, e) [ 1 >= a ] strictly and produces the following problem: 4: T: (?, 1) f4(a, b, c, d, e) -> f5(a, 1, c, d, e) [ a >= 2 ] (2, 1) f4(a, b, c, d, e) -> f5(a, 0, c, d, e) [ 1 >= a ] (1, 1) f30(a, b, c, d, e) -> f4(2, b, 2, f, e) (?, 1) f5(a, b, c, d, e) -> f4(a + 1, b, c, f, e) [ f >= 1 ] start location: f30 leaf cost: 1 Applied AI with 'oct' on problem 4 to obtain the following invariants: For symbol f4: -X_3 + 2 >= 0 /\ X_1 - X_3 >= 0 /\ X_3 - 2 >= 0 /\ X_1 + X_3 - 4 >= 0 /\ X_1 - 2 >= 0 For symbol f5: -X_3 + 2 >= 0 /\ X_2 - X_3 + 1 >= 0 /\ -X_2 - X_3 + 3 >= 0 /\ X_1 - X_3 >= 0 /\ X_3 - 2 >= 0 /\ X_2 + X_3 - 3 >= 0 /\ -X_2 + X_3 - 1 >= 0 /\ X_1 + X_3 - 4 >= 0 /\ -X_2 + 1 >= 0 /\ X_1 - X_2 - 1 >= 0 /\ X_2 - 1 >= 0 /\ X_1 + X_2 - 3 >= 0 /\ X_1 - 2 >= 0 This yielded the following problem: 5: T: (?, 1) f5(a, b, c, d, e) -> f4(a + 1, b, c, f, e) [ -c + 2 >= 0 /\ b - c + 1 >= 0 /\ -b - c + 3 >= 0 /\ a - c >= 0 /\ c - 2 >= 0 /\ b + c - 3 >= 0 /\ -b + c - 1 >= 0 /\ a + c - 4 >= 0 /\ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 /\ f >= 1 ] (1, 1) f30(a, b, c, d, e) -> f4(2, b, 2, f, e) (2, 1) f4(a, b, c, d, e) -> f5(a, 0, c, d, e) [ -c + 2 >= 0 /\ a - c >= 0 /\ c - 2 >= 0 /\ a + c - 4 >= 0 /\ a - 2 >= 0 /\ 1 >= a ] (?, 1) f4(a, b, c, d, e) -> f5(a, 1, c, d, e) [ -c + 2 >= 0 /\ a - c >= 0 /\ c - 2 >= 0 /\ a + c - 4 >= 0 /\ a - 2 >= 0 /\ a >= 2 ] start location: f30 leaf cost: 1 Testing for unsatisfiable constraints removes the following transition from problem 5: f4(a, b, c, d, e) -> f5(a, 0, c, d, e) [ -c + 2 >= 0 /\ a - c >= 0 /\ c - 2 >= 0 /\ a + c - 4 >= 0 /\ a - 2 >= 0 /\ 1 >= a ] We thus obtain the following problem: 6: T: (?, 1) f5(a, b, c, d, e) -> f4(a + 1, b, c, f, e) [ -c + 2 >= 0 /\ b - c + 1 >= 0 /\ -b - c + 3 >= 0 /\ a - c >= 0 /\ c - 2 >= 0 /\ b + c - 3 >= 0 /\ -b + c - 1 >= 0 /\ a + c - 4 >= 0 /\ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 /\ f >= 1 ] (1, 1) f30(a, b, c, d, e) -> f4(2, b, 2, f, e) (?, 1) f4(a, b, c, d, e) -> f5(a, 1, c, d, e) [ -c + 2 >= 0 /\ a - c >= 0 /\ c - 2 >= 0 /\ a + c - 4 >= 0 /\ a - 2 >= 0 /\ a >= 2 ] start location: f30 leaf cost: 1 By chaining the transition f5(a, b, c, d, e) -> f4(a + 1, b, c, f, e) [ -c + 2 >= 0 /\ b - c + 1 >= 0 /\ -b - c + 3 >= 0 /\ a - c >= 0 /\ c - 2 >= 0 /\ b + c - 3 >= 0 /\ -b + c - 1 >= 0 /\ a + c - 4 >= 0 /\ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 /\ f >= 1 ] with all transitions in problem 6, the following new transition is obtained: f5(a, b, c, d, e) -> f5(a + 1, 1, c, f, e) [ -c + 2 >= 0 /\ b - c + 1 >= 0 /\ -b - c + 3 >= 0 /\ a - c >= 0 /\ c - 2 >= 0 /\ b + c - 3 >= 0 /\ -b + c - 1 >= 0 /\ a + c - 4 >= 0 /\ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 /\ f >= 1 /\ a - c + 1 >= 0 /\ a + c - 3 >= 0 /\ a - 1 >= 0 /\ a + 1 >= 2 ] We thus obtain the following problem: 7: T: (?, 2) f5(a, b, c, d, e) -> f5(a + 1, 1, c, f, e) [ -c + 2 >= 0 /\ b - c + 1 >= 0 /\ -b - c + 3 >= 0 /\ a - c >= 0 /\ c - 2 >= 0 /\ b + c - 3 >= 0 /\ -b + c - 1 >= 0 /\ a + c - 4 >= 0 /\ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 /\ f >= 1 /\ a - c + 1 >= 0 /\ a + c - 3 >= 0 /\ a - 1 >= 0 /\ a + 1 >= 2 ] (1, 1) f30(a, b, c, d, e) -> f4(2, b, 2, f, e) (?, 1) f4(a, b, c, d, e) -> f5(a, 1, c, d, e) [ -c + 2 >= 0 /\ a - c >= 0 /\ c - 2 >= 0 /\ a + c - 4 >= 0 /\ a - 2 >= 0 /\ a >= 2 ] start location: f30 leaf cost: 1 Repeatedly propagating knowledge in problem 7 produces the following problem: 8: T: (?, 2) f5(a, b, c, d, e) -> f5(a + 1, 1, c, f, e) [ -c + 2 >= 0 /\ b - c + 1 >= 0 /\ -b - c + 3 >= 0 /\ a - c >= 0 /\ c - 2 >= 0 /\ b + c - 3 >= 0 /\ -b + c - 1 >= 0 /\ a + c - 4 >= 0 /\ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 /\ f >= 1 /\ a - c + 1 >= 0 /\ a + c - 3 >= 0 /\ a - 1 >= 0 /\ a + 1 >= 2 ] (1, 1) f30(a, b, c, d, e) -> f4(2, b, 2, f, e) (1, 1) f4(a, b, c, d, e) -> f5(a, 1, c, d, e) [ -c + 2 >= 0 /\ a - c >= 0 /\ c - 2 >= 0 /\ a + c - 4 >= 0 /\ a - 2 >= 0 /\ a >= 2 ] start location: f30 leaf cost: 1 By chaining the transition f30(a, b, c, d, e) -> f4(2, b, 2, f, e) with all transitions in problem 8, the following new transition is obtained: f30(a, b, c, d, e) -> f5(2, 1, 2, f, e) [ 0 >= 0 /\ 2 >= 2 ] We thus obtain the following problem: 9: T: (1, 2) f30(a, b, c, d, e) -> f5(2, 1, 2, f, e) [ 0 >= 0 /\ 2 >= 2 ] (?, 2) f5(a, b, c, d, e) -> f5(a + 1, 1, c, f, e) [ -c + 2 >= 0 /\ b - c + 1 >= 0 /\ -b - c + 3 >= 0 /\ a - c >= 0 /\ c - 2 >= 0 /\ b + c - 3 >= 0 /\ -b + c - 1 >= 0 /\ a + c - 4 >= 0 /\ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 /\ f >= 1 /\ a - c + 1 >= 0 /\ a + c - 3 >= 0 /\ a - 1 >= 0 /\ a + 1 >= 2 ] (1, 1) f4(a, b, c, d, e) -> f5(a, 1, c, d, e) [ -c + 2 >= 0 /\ a - c >= 0 /\ c - 2 >= 0 /\ a + c - 4 >= 0 /\ a - 2 >= 0 /\ a >= 2 ] start location: f30 leaf cost: 1 Testing for reachability in the complexity graph removes the following transition from problem 9: f4(a, b, c, d, e) -> f5(a, 1, c, d, e) [ -c + 2 >= 0 /\ a - c >= 0 /\ c - 2 >= 0 /\ a + c - 4 >= 0 /\ a - 2 >= 0 /\ a >= 2 ] We thus obtain the following problem: 10: T: (?, 2) f5(a, b, c, d, e) -> f5(a + 1, 1, c, f, e) [ -c + 2 >= 0 /\ b - c + 1 >= 0 /\ -b - c + 3 >= 0 /\ a - c >= 0 /\ c - 2 >= 0 /\ b + c - 3 >= 0 /\ -b + c - 1 >= 0 /\ a + c - 4 >= 0 /\ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 /\ f >= 1 /\ a - c + 1 >= 0 /\ a + c - 3 >= 0 /\ a - 1 >= 0 /\ a + 1 >= 2 ] (1, 2) f30(a, b, c, d, e) -> f5(2, 1, 2, f, e) [ 0 >= 0 /\ 2 >= 2 ] start location: f30 leaf cost: 1 By chaining the transition f30(a, b, c, d, e) -> f5(2, 1, 2, f, e) [ 0 >= 0 /\ 2 >= 2 ] with all transitions in problem 10, the following new transition is obtained: f30(a, b, c, d, e) -> f5(3, 1, 2, f', e) [ 0 >= 0 /\ 2 >= 2 /\ f' >= 1 /\ 1 >= 0 /\ 3 >= 2 ] We thus obtain the following problem: 11: T: (1, 4) f30(a, b, c, d, e) -> f5(3, 1, 2, f', e) [ 0 >= 0 /\ 2 >= 2 /\ f' >= 1 /\ 1 >= 0 /\ 3 >= 2 ] (?, 2) f5(a, b, c, d, e) -> f5(a + 1, 1, c, f, e) [ -c + 2 >= 0 /\ b - c + 1 >= 0 /\ -b - c + 3 >= 0 /\ a - c >= 0 /\ c - 2 >= 0 /\ b + c - 3 >= 0 /\ -b + c - 1 >= 0 /\ a + c - 4 >= 0 /\ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 /\ f >= 1 /\ a - c + 1 >= 0 /\ a + c - 3 >= 0 /\ a - 1 >= 0 /\ a + 1 >= 2 ] start location: f30 leaf cost: 1 By chaining the transition f30(a, b, c, d, e) -> f5(3, 1, 2, f', e) [ 0 >= 0 /\ 2 >= 2 /\ f' >= 1 /\ 1 >= 0 /\ 3 >= 2 ] with all transitions in problem 11, the following new transition is obtained: f30(a, b, c, d, e) -> f5(4, 1, 2, f, e) [ 0 >= 0 /\ 2 >= 2 /\ f' >= 1 /\ 1 >= 0 /\ 3 >= 2 /\ f >= 1 /\ 2 >= 0 /\ 4 >= 2 ] We thus obtain the following problem: 12: T: (1, 6) f30(a, b, c, d, e) -> f5(4, 1, 2, f, e) [ 0 >= 0 /\ 2 >= 2 /\ f' >= 1 /\ 1 >= 0 /\ 3 >= 2 /\ f >= 1 /\ 2 >= 0 /\ 4 >= 2 ] (?, 2) f5(a, b, c, d, e) -> f5(a + 1, 1, c, f, e) [ -c + 2 >= 0 /\ b - c + 1 >= 0 /\ -b - c + 3 >= 0 /\ a - c >= 0 /\ c - 2 >= 0 /\ b + c - 3 >= 0 /\ -b + c - 1 >= 0 /\ a + c - 4 >= 0 /\ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 /\ f >= 1 /\ a - c + 1 >= 0 /\ a + c - 3 >= 0 /\ a - 1 >= 0 /\ a + 1 >= 2 ] start location: f30 leaf cost: 1 By chaining the transition f30(a, b, c, d, e) -> f5(4, 1, 2, f, e) [ 0 >= 0 /\ 2 >= 2 /\ f' >= 1 /\ 1 >= 0 /\ 3 >= 2 /\ f >= 1 /\ 2 >= 0 /\ 4 >= 2 ] with all transitions in problem 12, the following new transition is obtained: f30(a, b, c, d, e) -> f5(5, 1, 2, f'', e) [ 0 >= 0 /\ 2 >= 2 /\ f' >= 1 /\ 1 >= 0 /\ 3 >= 2 /\ f >= 1 /\ 2 >= 0 /\ 4 >= 2 /\ f'' >= 1 /\ 3 >= 0 /\ 5 >= 2 ] We thus obtain the following problem: 13: T: (1, 8) f30(a, b, c, d, e) -> f5(5, 1, 2, f'', e) [ 0 >= 0 /\ 2 >= 2 /\ f' >= 1 /\ 1 >= 0 /\ 3 >= 2 /\ f >= 1 /\ 2 >= 0 /\ 4 >= 2 /\ f'' >= 1 /\ 3 >= 0 /\ 5 >= 2 ] (?, 2) f5(a, b, c, d, e) -> f5(a + 1, 1, c, f, e) [ -c + 2 >= 0 /\ b - c + 1 >= 0 /\ -b - c + 3 >= 0 /\ a - c >= 0 /\ c - 2 >= 0 /\ b + c - 3 >= 0 /\ -b + c - 1 >= 0 /\ a + c - 4 >= 0 /\ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 /\ f >= 1 /\ a - c + 1 >= 0 /\ a + c - 3 >= 0 /\ a - 1 >= 0 /\ a + 1 >= 2 ] start location: f30 leaf cost: 1 By chaining the transition f30(a, b, c, d, e) -> f5(5, 1, 2, f'', e) [ 0 >= 0 /\ 2 >= 2 /\ f' >= 1 /\ 1 >= 0 /\ 3 >= 2 /\ f >= 1 /\ 2 >= 0 /\ 4 >= 2 /\ f'' >= 1 /\ 3 >= 0 /\ 5 >= 2 ] with all transitions in problem 13, the following new transition is obtained: f30(a, b, c, d, e) -> f5(6, 1, 2, f''', e) [ 0 >= 0 /\ 2 >= 2 /\ f' >= 1 /\ 1 >= 0 /\ 3 >= 2 /\ f >= 1 /\ 2 >= 0 /\ 4 >= 2 /\ f'' >= 1 /\ 3 >= 0 /\ 5 >= 2 /\ f''' >= 1 /\ 4 >= 0 /\ 6 >= 2 ] We thus obtain the following problem: 14: T: (1, 10) f30(a, b, c, d, e) -> f5(6, 1, 2, f''', e) [ 0 >= 0 /\ 2 >= 2 /\ f' >= 1 /\ 1 >= 0 /\ 3 >= 2 /\ f >= 1 /\ 2 >= 0 /\ 4 >= 2 /\ f'' >= 1 /\ 3 >= 0 /\ 5 >= 2 /\ f''' >= 1 /\ 4 >= 0 /\ 6 >= 2 ] (?, 2) f5(a, b, c, d, e) -> f5(a + 1, 1, c, f, e) [ -c + 2 >= 0 /\ b - c + 1 >= 0 /\ -b - c + 3 >= 0 /\ a - c >= 0 /\ c - 2 >= 0 /\ b + c - 3 >= 0 /\ -b + c - 1 >= 0 /\ a + c - 4 >= 0 /\ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 /\ f >= 1 /\ a - c + 1 >= 0 /\ a + c - 3 >= 0 /\ a - 1 >= 0 /\ a + 1 >= 2 ] start location: f30 leaf cost: 1 By chaining the transition f30(a, b, c, d, e) -> f5(6, 1, 2, f''', e) [ 0 >= 0 /\ 2 >= 2 /\ f' >= 1 /\ 1 >= 0 /\ 3 >= 2 /\ f >= 1 /\ 2 >= 0 /\ 4 >= 2 /\ f'' >= 1 /\ 3 >= 0 /\ 5 >= 2 /\ f''' >= 1 /\ 4 >= 0 /\ 6 >= 2 ] with all transitions in problem 14, the following new transition is obtained: f30(a, b, c, d, e) -> f5(7, 1, 2, f'''', e) [ 0 >= 0 /\ 2 >= 2 /\ f' >= 1 /\ 1 >= 0 /\ 3 >= 2 /\ f >= 1 /\ 2 >= 0 /\ 4 >= 2 /\ f'' >= 1 /\ 3 >= 0 /\ 5 >= 2 /\ f''' >= 1 /\ 4 >= 0 /\ 6 >= 2 /\ f'''' >= 1 /\ 5 >= 0 /\ 7 >= 2 ] We thus obtain the following problem: 15: T: (1, 12) f30(a, b, c, d, e) -> f5(7, 1, 2, f'''', e) [ 0 >= 0 /\ 2 >= 2 /\ f' >= 1 /\ 1 >= 0 /\ 3 >= 2 /\ f >= 1 /\ 2 >= 0 /\ 4 >= 2 /\ f'' >= 1 /\ 3 >= 0 /\ 5 >= 2 /\ f''' >= 1 /\ 4 >= 0 /\ 6 >= 2 /\ f'''' >= 1 /\ 5 >= 0 /\ 7 >= 2 ] (?, 2) f5(a, b, c, d, e) -> f5(a + 1, 1, c, f, e) [ -c + 2 >= 0 /\ b - c + 1 >= 0 /\ -b - c + 3 >= 0 /\ a - c >= 0 /\ c - 2 >= 0 /\ b + c - 3 >= 0 /\ -b + c - 1 >= 0 /\ a + c - 4 >= 0 /\ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 /\ f >= 1 /\ a - c + 1 >= 0 /\ a + c - 3 >= 0 /\ a - 1 >= 0 /\ a + 1 >= 2 ] start location: f30 leaf cost: 1 By chaining the transition f30(a, b, c, d, e) -> f5(7, 1, 2, f'''', e) [ 0 >= 0 /\ 2 >= 2 /\ f' >= 1 /\ 1 >= 0 /\ 3 >= 2 /\ f >= 1 /\ 2 >= 0 /\ 4 >= 2 /\ f'' >= 1 /\ 3 >= 0 /\ 5 >= 2 /\ f''' >= 1 /\ 4 >= 0 /\ 6 >= 2 /\ f'''' >= 1 /\ 5 >= 0 /\ 7 >= 2 ] with all transitions in problem 15, the following new transition is obtained: f30(a, b, c, d, e) -> f5(8, 1, 2, f''''', e) [ 0 >= 0 /\ 2 >= 2 /\ f' >= 1 /\ 1 >= 0 /\ 3 >= 2 /\ f >= 1 /\ 2 >= 0 /\ 4 >= 2 /\ f'' >= 1 /\ 3 >= 0 /\ 5 >= 2 /\ f''' >= 1 /\ 4 >= 0 /\ 6 >= 2 /\ f'''' >= 1 /\ 5 >= 0 /\ 7 >= 2 /\ f''''' >= 1 /\ 6 >= 0 /\ 8 >= 2 ] We thus obtain the following problem: 16: T: (1, 14) f30(a, b, c, d, e) -> f5(8, 1, 2, f''''', e) [ 0 >= 0 /\ 2 >= 2 /\ f' >= 1 /\ 1 >= 0 /\ 3 >= 2 /\ f >= 1 /\ 2 >= 0 /\ 4 >= 2 /\ f'' >= 1 /\ 3 >= 0 /\ 5 >= 2 /\ f''' >= 1 /\ 4 >= 0 /\ 6 >= 2 /\ f'''' >= 1 /\ 5 >= 0 /\ 7 >= 2 /\ f''''' >= 1 /\ 6 >= 0 /\ 8 >= 2 ] (?, 2) f5(a, b, c, d, e) -> f5(a + 1, 1, c, f, e) [ -c + 2 >= 0 /\ b - c + 1 >= 0 /\ -b - c + 3 >= 0 /\ a - c >= 0 /\ c - 2 >= 0 /\ b + c - 3 >= 0 /\ -b + c - 1 >= 0 /\ a + c - 4 >= 0 /\ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 /\ f >= 1 /\ a - c + 1 >= 0 /\ a + c - 3 >= 0 /\ a - 1 >= 0 /\ a + 1 >= 2 ] start location: f30 leaf cost: 1 By chaining the transition f30(a, b, c, d, e) -> f5(8, 1, 2, f''''', e) [ 0 >= 0 /\ 2 >= 2 /\ f' >= 1 /\ 1 >= 0 /\ 3 >= 2 /\ f >= 1 /\ 2 >= 0 /\ 4 >= 2 /\ f'' >= 1 /\ 3 >= 0 /\ 5 >= 2 /\ f''' >= 1 /\ 4 >= 0 /\ 6 >= 2 /\ f'''' >= 1 /\ 5 >= 0 /\ 7 >= 2 /\ f''''' >= 1 /\ 6 >= 0 /\ 8 >= 2 ] with all transitions in problem 16, the following new transition is obtained: f30(a, b, c, d, e) -> f5(9, 1, 2, f'''''', e) [ 0 >= 0 /\ 2 >= 2 /\ f' >= 1 /\ 1 >= 0 /\ 3 >= 2 /\ f >= 1 /\ 2 >= 0 /\ 4 >= 2 /\ f'' >= 1 /\ 3 >= 0 /\ 5 >= 2 /\ f''' >= 1 /\ 4 >= 0 /\ 6 >= 2 /\ f'''' >= 1 /\ 5 >= 0 /\ 7 >= 2 /\ f''''' >= 1 /\ 6 >= 0 /\ 8 >= 2 /\ f'''''' >= 1 /\ 7 >= 0 /\ 9 >= 2 ] We thus obtain the following problem: 17: T: (1, 16) f30(a, b, c, d, e) -> f5(9, 1, 2, f'''''', e) [ 0 >= 0 /\ 2 >= 2 /\ f' >= 1 /\ 1 >= 0 /\ 3 >= 2 /\ f >= 1 /\ 2 >= 0 /\ 4 >= 2 /\ f'' >= 1 /\ 3 >= 0 /\ 5 >= 2 /\ f''' >= 1 /\ 4 >= 0 /\ 6 >= 2 /\ f'''' >= 1 /\ 5 >= 0 /\ 7 >= 2 /\ f''''' >= 1 /\ 6 >= 0 /\ 8 >= 2 /\ f'''''' >= 1 /\ 7 >= 0 /\ 9 >= 2 ] (?, 2) f5(a, b, c, d, e) -> f5(a + 1, 1, c, f, e) [ -c + 2 >= 0 /\ b - c + 1 >= 0 /\ -b - c + 3 >= 0 /\ a - c >= 0 /\ c - 2 >= 0 /\ b + c - 3 >= 0 /\ -b + c - 1 >= 0 /\ a + c - 4 >= 0 /\ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 /\ f >= 1 /\ a - c + 1 >= 0 /\ a + c - 3 >= 0 /\ a - 1 >= 0 /\ a + 1 >= 2 ] start location: f30 leaf cost: 1 By chaining the transition f30(a, b, c, d, e) -> f5(9, 1, 2, f'''''', e) [ 0 >= 0 /\ 2 >= 2 /\ f' >= 1 /\ 1 >= 0 /\ 3 >= 2 /\ f >= 1 /\ 2 >= 0 /\ 4 >= 2 /\ f'' >= 1 /\ 3 >= 0 /\ 5 >= 2 /\ f''' >= 1 /\ 4 >= 0 /\ 6 >= 2 /\ f'''' >= 1 /\ 5 >= 0 /\ 7 >= 2 /\ f''''' >= 1 /\ 6 >= 0 /\ 8 >= 2 /\ f'''''' >= 1 /\ 7 >= 0 /\ 9 >= 2 ] with all transitions in problem 17, the following new transition is obtained: f30(a, b, c, d, e) -> f5(10, 1, 2, f''''''', e) [ 0 >= 0 /\ 2 >= 2 /\ f' >= 1 /\ 1 >= 0 /\ 3 >= 2 /\ f >= 1 /\ 2 >= 0 /\ 4 >= 2 /\ f'' >= 1 /\ 3 >= 0 /\ 5 >= 2 /\ f''' >= 1 /\ 4 >= 0 /\ 6 >= 2 /\ f'''' >= 1 /\ 5 >= 0 /\ 7 >= 2 /\ f''''' >= 1 /\ 6 >= 0 /\ 8 >= 2 /\ f'''''' >= 1 /\ 7 >= 0 /\ 9 >= 2 /\ f''''''' >= 1 /\ 8 >= 0 /\ 10 >= 2 ] We thus obtain the following problem: 18: T: (1, 18) f30(a, b, c, d, e) -> f5(10, 1, 2, f''''''', e) [ 0 >= 0 /\ 2 >= 2 /\ f' >= 1 /\ 1 >= 0 /\ 3 >= 2 /\ f >= 1 /\ 2 >= 0 /\ 4 >= 2 /\ f'' >= 1 /\ 3 >= 0 /\ 5 >= 2 /\ f''' >= 1 /\ 4 >= 0 /\ 6 >= 2 /\ f'''' >= 1 /\ 5 >= 0 /\ 7 >= 2 /\ f''''' >= 1 /\ 6 >= 0 /\ 8 >= 2 /\ f'''''' >= 1 /\ 7 >= 0 /\ 9 >= 2 /\ f''''''' >= 1 /\ 8 >= 0 /\ 10 >= 2 ] (?, 2) f5(a, b, c, d, e) -> f5(a + 1, 1, c, f, e) [ -c + 2 >= 0 /\ b - c + 1 >= 0 /\ -b - c + 3 >= 0 /\ a - c >= 0 /\ c - 2 >= 0 /\ b + c - 3 >= 0 /\ -b + c - 1 >= 0 /\ a + c - 4 >= 0 /\ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 /\ f >= 1 /\ a - c + 1 >= 0 /\ a + c - 3 >= 0 /\ a - 1 >= 0 /\ a + 1 >= 2 ] start location: f30 leaf cost: 1 By chaining the transition f30(a, b, c, d, e) -> f5(10, 1, 2, f''''''', e) [ 0 >= 0 /\ 2 >= 2 /\ f' >= 1 /\ 1 >= 0 /\ 3 >= 2 /\ f >= 1 /\ 2 >= 0 /\ 4 >= 2 /\ f'' >= 1 /\ 3 >= 0 /\ 5 >= 2 /\ f''' >= 1 /\ 4 >= 0 /\ 6 >= 2 /\ f'''' >= 1 /\ 5 >= 0 /\ 7 >= 2 /\ f''''' >= 1 /\ 6 >= 0 /\ 8 >= 2 /\ f'''''' >= 1 /\ 7 >= 0 /\ 9 >= 2 /\ f''''''' >= 1 /\ 8 >= 0 /\ 10 >= 2 ] with all transitions in problem 18, the following new transition is obtained: f30(a, b, c, d, e) -> f5(11, 1, 2, f'''''''', e) [ 0 >= 0 /\ 2 >= 2 /\ f' >= 1 /\ 1 >= 0 /\ 3 >= 2 /\ f >= 1 /\ 2 >= 0 /\ 4 >= 2 /\ f'' >= 1 /\ 3 >= 0 /\ 5 >= 2 /\ f''' >= 1 /\ 4 >= 0 /\ 6 >= 2 /\ f'''' >= 1 /\ 5 >= 0 /\ 7 >= 2 /\ f''''' >= 1 /\ 6 >= 0 /\ 8 >= 2 /\ f'''''' >= 1 /\ 7 >= 0 /\ 9 >= 2 /\ f''''''' >= 1 /\ 8 >= 0 /\ 10 >= 2 /\ f'''''''' >= 1 /\ 9 >= 0 /\ 11 >= 2 ] We thus obtain the following problem: 19: T: (1, 20) f30(a, b, c, d, e) -> f5(11, 1, 2, f'''''''', e) [ 0 >= 0 /\ 2 >= 2 /\ f' >= 1 /\ 1 >= 0 /\ 3 >= 2 /\ f >= 1 /\ 2 >= 0 /\ 4 >= 2 /\ f'' >= 1 /\ 3 >= 0 /\ 5 >= 2 /\ f''' >= 1 /\ 4 >= 0 /\ 6 >= 2 /\ f'''' >= 1 /\ 5 >= 0 /\ 7 >= 2 /\ f''''' >= 1 /\ 6 >= 0 /\ 8 >= 2 /\ f'''''' >= 1 /\ 7 >= 0 /\ 9 >= 2 /\ f''''''' >= 1 /\ 8 >= 0 /\ 10 >= 2 /\ f'''''''' >= 1 /\ 9 >= 0 /\ 11 >= 2 ] (?, 2) f5(a, b, c, d, e) -> f5(a + 1, 1, c, f, e) [ -c + 2 >= 0 /\ b - c + 1 >= 0 /\ -b - c + 3 >= 0 /\ a - c >= 0 /\ c - 2 >= 0 /\ b + c - 3 >= 0 /\ -b + c - 1 >= 0 /\ a + c - 4 >= 0 /\ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 /\ f >= 1 /\ a - c + 1 >= 0 /\ a + c - 3 >= 0 /\ a - 1 >= 0 /\ a + 1 >= 2 ] start location: f30 leaf cost: 1 By chaining the transition f30(a, b, c, d, e) -> f5(11, 1, 2, f'''''''', e) [ 0 >= 0 /\ 2 >= 2 /\ f' >= 1 /\ 1 >= 0 /\ 3 >= 2 /\ f >= 1 /\ 2 >= 0 /\ 4 >= 2 /\ f'' >= 1 /\ 3 >= 0 /\ 5 >= 2 /\ f''' >= 1 /\ 4 >= 0 /\ 6 >= 2 /\ f'''' >= 1 /\ 5 >= 0 /\ 7 >= 2 /\ f''''' >= 1 /\ 6 >= 0 /\ 8 >= 2 /\ f'''''' >= 1 /\ 7 >= 0 /\ 9 >= 2 /\ f''''''' >= 1 /\ 8 >= 0 /\ 10 >= 2 /\ f'''''''' >= 1 /\ 9 >= 0 /\ 11 >= 2 ] with all transitions in problem 19, the following new transition is obtained: f30(a, b, c, d, e) -> f5(12, 1, 2, f''''''''', e) [ 0 >= 0 /\ 2 >= 2 /\ f' >= 1 /\ 1 >= 0 /\ 3 >= 2 /\ f >= 1 /\ 2 >= 0 /\ 4 >= 2 /\ f'' >= 1 /\ 3 >= 0 /\ 5 >= 2 /\ f''' >= 1 /\ 4 >= 0 /\ 6 >= 2 /\ f'''' >= 1 /\ 5 >= 0 /\ 7 >= 2 /\ f''''' >= 1 /\ 6 >= 0 /\ 8 >= 2 /\ f'''''' >= 1 /\ 7 >= 0 /\ 9 >= 2 /\ f''''''' >= 1 /\ 8 >= 0 /\ 10 >= 2 /\ f'''''''' >= 1 /\ 9 >= 0 /\ 11 >= 2 /\ f''''''''' >= 1 /\ 10 >= 0 /\ 12 >= 2 ] We thus obtain the following problem: 20: T: (1, 22) f30(a, b, c, d, e) -> f5(12, 1, 2, f''''''''', e) [ 0 >= 0 /\ 2 >= 2 /\ f' >= 1 /\ 1 >= 0 /\ 3 >= 2 /\ f >= 1 /\ 2 >= 0 /\ 4 >= 2 /\ f'' >= 1 /\ 3 >= 0 /\ 5 >= 2 /\ f''' >= 1 /\ 4 >= 0 /\ 6 >= 2 /\ f'''' >= 1 /\ 5 >= 0 /\ 7 >= 2 /\ f''''' >= 1 /\ 6 >= 0 /\ 8 >= 2 /\ f'''''' >= 1 /\ 7 >= 0 /\ 9 >= 2 /\ f''''''' >= 1 /\ 8 >= 0 /\ 10 >= 2 /\ f'''''''' >= 1 /\ 9 >= 0 /\ 11 >= 2 /\ f''''''''' >= 1 /\ 10 >= 0 /\ 12 >= 2 ] (?, 2) f5(a, b, c, d, e) -> f5(a + 1, 1, c, f, e) [ -c + 2 >= 0 /\ b - c + 1 >= 0 /\ -b - c + 3 >= 0 /\ a - c >= 0 /\ c - 2 >= 0 /\ b + c - 3 >= 0 /\ -b + c - 1 >= 0 /\ a + c - 4 >= 0 /\ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 /\ f >= 1 /\ a - c + 1 >= 0 /\ a + c - 3 >= 0 /\ a - 1 >= 0 /\ a + 1 >= 2 ] start location: f30 leaf cost: 1 By chaining the transition f30(a, b, c, d, e) -> f5(12, 1, 2, f''''''''', e) [ 0 >= 0 /\ 2 >= 2 /\ f' >= 1 /\ 1 >= 0 /\ 3 >= 2 /\ f >= 1 /\ 2 >= 0 /\ 4 >= 2 /\ f'' >= 1 /\ 3 >= 0 /\ 5 >= 2 /\ f''' >= 1 /\ 4 >= 0 /\ 6 >= 2 /\ f'''' >= 1 /\ 5 >= 0 /\ 7 >= 2 /\ f''''' >= 1 /\ 6 >= 0 /\ 8 >= 2 /\ f'''''' >= 1 /\ 7 >= 0 /\ 9 >= 2 /\ f''''''' >= 1 /\ 8 >= 0 /\ 10 >= 2 /\ f'''''''' >= 1 /\ 9 >= 0 /\ 11 >= 2 /\ f''''''''' >= 1 /\ 10 >= 0 /\ 12 >= 2 ] with all transitions in problem 20, the following new transition is obtained: f30(a, b, c, d, e) -> f5(13, 1, 2, f'''''''''', e) [ 0 >= 0 /\ 2 >= 2 /\ f' >= 1 /\ 1 >= 0 /\ 3 >= 2 /\ f >= 1 /\ 2 >= 0 /\ 4 >= 2 /\ f'' >= 1 /\ 3 >= 0 /\ 5 >= 2 /\ f''' >= 1 /\ 4 >= 0 /\ 6 >= 2 /\ f'''' >= 1 /\ 5 >= 0 /\ 7 >= 2 /\ f''''' >= 1 /\ 6 >= 0 /\ 8 >= 2 /\ f'''''' >= 1 /\ 7 >= 0 /\ 9 >= 2 /\ f''''''' >= 1 /\ 8 >= 0 /\ 10 >= 2 /\ f'''''''' >= 1 /\ 9 >= 0 /\ 11 >= 2 /\ f''''''''' >= 1 /\ 10 >= 0 /\ 12 >= 2 /\ f'''''''''' >= 1 /\ 11 >= 0 /\ 13 >= 2 ] We thus obtain the following problem: 21: T: (1, 24) f30(a, b, c, d, e) -> f5(13, 1, 2, f'''''''''', e) [ 0 >= 0 /\ 2 >= 2 /\ f' >= 1 /\ 1 >= 0 /\ 3 >= 2 /\ f >= 1 /\ 2 >= 0 /\ 4 >= 2 /\ f'' >= 1 /\ 3 >= 0 /\ 5 >= 2 /\ f''' >= 1 /\ 4 >= 0 /\ 6 >= 2 /\ f'''' >= 1 /\ 5 >= 0 /\ 7 >= 2 /\ f''''' >= 1 /\ 6 >= 0 /\ 8 >= 2 /\ f'''''' >= 1 /\ 7 >= 0 /\ 9 >= 2 /\ f''''''' >= 1 /\ 8 >= 0 /\ 10 >= 2 /\ f'''''''' >= 1 /\ 9 >= 0 /\ 11 >= 2 /\ f''''''''' >= 1 /\ 10 >= 0 /\ 12 >= 2 /\ f'''''''''' >= 1 /\ 11 >= 0 /\ 13 >= 2 ] (?, 2) f5(a, b, c, d, e) -> f5(a + 1, 1, c, f, e) [ -c + 2 >= 0 /\ b - c + 1 >= 0 /\ -b - c + 3 >= 0 /\ a - c >= 0 /\ c - 2 >= 0 /\ b + c - 3 >= 0 /\ -b + c - 1 >= 0 /\ a + c - 4 >= 0 /\ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 /\ f >= 1 /\ a - c + 1 >= 0 /\ a + c - 3 >= 0 /\ a - 1 >= 0 /\ a + 1 >= 2 ] start location: f30 leaf cost: 1 By chaining the transition f30(a, b, c, d, e) -> f5(13, 1, 2, f'''''''''', e) [ 0 >= 0 /\ 2 >= 2 /\ f' >= 1 /\ 1 >= 0 /\ 3 >= 2 /\ f >= 1 /\ 2 >= 0 /\ 4 >= 2 /\ f'' >= 1 /\ 3 >= 0 /\ 5 >= 2 /\ f''' >= 1 /\ 4 >= 0 /\ 6 >= 2 /\ f'''' >= 1 /\ 5 >= 0 /\ 7 >= 2 /\ f''''' >= 1 /\ 6 >= 0 /\ 8 >= 2 /\ f'''''' >= 1 /\ 7 >= 0 /\ 9 >= 2 /\ f''''''' >= 1 /\ 8 >= 0 /\ 10 >= 2 /\ f'''''''' >= 1 /\ 9 >= 0 /\ 11 >= 2 /\ f''''''''' >= 1 /\ 10 >= 0 /\ 12 >= 2 /\ f'''''''''' >= 1 /\ 11 >= 0 /\ 13 >= 2 ] with all transitions in problem 21, the following new transition is obtained: f30(a, b, c, d, e) -> f5(14, 1, 2, f''''''''''', e) [ 0 >= 0 /\ 2 >= 2 /\ f' >= 1 /\ 1 >= 0 /\ 3 >= 2 /\ f >= 1 /\ 2 >= 0 /\ 4 >= 2 /\ f'' >= 1 /\ 3 >= 0 /\ 5 >= 2 /\ f''' >= 1 /\ 4 >= 0 /\ 6 >= 2 /\ f'''' >= 1 /\ 5 >= 0 /\ 7 >= 2 /\ f''''' >= 1 /\ 6 >= 0 /\ 8 >= 2 /\ f'''''' >= 1 /\ 7 >= 0 /\ 9 >= 2 /\ f''''''' >= 1 /\ 8 >= 0 /\ 10 >= 2 /\ f'''''''' >= 1 /\ 9 >= 0 /\ 11 >= 2 /\ f''''''''' >= 1 /\ 10 >= 0 /\ 12 >= 2 /\ f'''''''''' >= 1 /\ 11 >= 0 /\ 13 >= 2 /\ f''''''''''' >= 1 /\ 12 >= 0 /\ 14 >= 2 ] We thus obtain the following problem: 22: T: (1, 26) f30(a, b, c, d, e) -> f5(14, 1, 2, f''''''''''', e) [ 0 >= 0 /\ 2 >= 2 /\ f' >= 1 /\ 1 >= 0 /\ 3 >= 2 /\ f >= 1 /\ 2 >= 0 /\ 4 >= 2 /\ f'' >= 1 /\ 3 >= 0 /\ 5 >= 2 /\ f''' >= 1 /\ 4 >= 0 /\ 6 >= 2 /\ f'''' >= 1 /\ 5 >= 0 /\ 7 >= 2 /\ f''''' >= 1 /\ 6 >= 0 /\ 8 >= 2 /\ f'''''' >= 1 /\ 7 >= 0 /\ 9 >= 2 /\ f''''''' >= 1 /\ 8 >= 0 /\ 10 >= 2 /\ f'''''''' >= 1 /\ 9 >= 0 /\ 11 >= 2 /\ f''''''''' >= 1 /\ 10 >= 0 /\ 12 >= 2 /\ f'''''''''' >= 1 /\ 11 >= 0 /\ 13 >= 2 /\ f''''''''''' >= 1 /\ 12 >= 0 /\ 14 >= 2 ] (?, 2) f5(a, b, c, d, e) -> f5(a + 1, 1, c, f, e) [ -c + 2 >= 0 /\ b - c + 1 >= 0 /\ -b - c + 3 >= 0 /\ a - c >= 0 /\ c - 2 >= 0 /\ b + c - 3 >= 0 /\ -b + c - 1 >= 0 /\ a + c - 4 >= 0 /\ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 /\ f >= 1 /\ a - c + 1 >= 0 /\ a + c - 3 >= 0 /\ a - 1 >= 0 /\ a + 1 >= 2 ] start location: f30 leaf cost: 1 By chaining the transition f30(a, b, c, d, e) -> f5(14, 1, 2, f''''''''''', e) [ 0 >= 0 /\ 2 >= 2 /\ f' >= 1 /\ 1 >= 0 /\ 3 >= 2 /\ f >= 1 /\ 2 >= 0 /\ 4 >= 2 /\ f'' >= 1 /\ 3 >= 0 /\ 5 >= 2 /\ f''' >= 1 /\ 4 >= 0 /\ 6 >= 2 /\ f'''' >= 1 /\ 5 >= 0 /\ 7 >= 2 /\ f''''' >= 1 /\ 6 >= 0 /\ 8 >= 2 /\ f'''''' >= 1 /\ 7 >= 0 /\ 9 >= 2 /\ f''''''' >= 1 /\ 8 >= 0 /\ 10 >= 2 /\ f'''''''' >= 1 /\ 9 >= 0 /\ 11 >= 2 /\ f''''''''' >= 1 /\ 10 >= 0 /\ 12 >= 2 /\ f'''''''''' >= 1 /\ 11 >= 0 /\ 13 >= 2 /\ f''''''''''' >= 1 /\ 12 >= 0 /\ 14 >= 2 ] with all transitions in problem 22, the following new transition is obtained: f30(a, b, c, d, e) -> f5(15, 1, 2, f'''''''''''', e) [ 0 >= 0 /\ 2 >= 2 /\ f' >= 1 /\ 1 >= 0 /\ 3 >= 2 /\ f >= 1 /\ 2 >= 0 /\ 4 >= 2 /\ f'' >= 1 /\ 3 >= 0 /\ 5 >= 2 /\ f''' >= 1 /\ 4 >= 0 /\ 6 >= 2 /\ f'''' >= 1 /\ 5 >= 0 /\ 7 >= 2 /\ f''''' >= 1 /\ 6 >= 0 /\ 8 >= 2 /\ f'''''' >= 1 /\ 7 >= 0 /\ 9 >= 2 /\ f''''''' >= 1 /\ 8 >= 0 /\ 10 >= 2 /\ f'''''''' >= 1 /\ 9 >= 0 /\ 11 >= 2 /\ f''''''''' >= 1 /\ 10 >= 0 /\ 12 >= 2 /\ f'''''''''' >= 1 /\ 11 >= 0 /\ 13 >= 2 /\ f''''''''''' >= 1 /\ 12 >= 0 /\ 14 >= 2 /\ f'''''''''''' >= 1 /\ 13 >= 0 /\ 15 >= 2 ] We thus obtain the following problem: 23: T: (1, 28) f30(a, b, c, d, e) -> f5(15, 1, 2, f'''''''''''', e) [ 0 >= 0 /\ 2 >= 2 /\ f' >= 1 /\ 1 >= 0 /\ 3 >= 2 /\ f >= 1 /\ 2 >= 0 /\ 4 >= 2 /\ f'' >= 1 /\ 3 >= 0 /\ 5 >= 2 /\ f''' >= 1 /\ 4 >= 0 /\ 6 >= 2 /\ f'''' >= 1 /\ 5 >= 0 /\ 7 >= 2 /\ f''''' >= 1 /\ 6 >= 0 /\ 8 >= 2 /\ f'''''' >= 1 /\ 7 >= 0 /\ 9 >= 2 /\ f''''''' >= 1 /\ 8 >= 0 /\ 10 >= 2 /\ f'''''''' >= 1 /\ 9 >= 0 /\ 11 >= 2 /\ f''''''''' >= 1 /\ 10 >= 0 /\ 12 >= 2 /\ f'''''''''' >= 1 /\ 11 >= 0 /\ 13 >= 2 /\ f''''''''''' >= 1 /\ 12 >= 0 /\ 14 >= 2 /\ f'''''''''''' >= 1 /\ 13 >= 0 /\ 15 >= 2 ] (?, 2) f5(a, b, c, d, e) -> f5(a + 1, 1, c, f, e) [ -c + 2 >= 0 /\ b - c + 1 >= 0 /\ -b - c + 3 >= 0 /\ a - c >= 0 /\ c - 2 >= 0 /\ b + c - 3 >= 0 /\ -b + c - 1 >= 0 /\ a + c - 4 >= 0 /\ -b + 1 >= 0 /\ a - b - 1 >= 0 /\ b - 1 >= 0 /\ a + b - 3 >= 0 /\ a - 2 >= 0 /\ f >= 1 /\ a - c + 1 >= 0 /\ a + c - 3 >= 0 /\ a - 1 >= 0 /\ a + 1 >= 2 ] start location: f30 leaf cost: 1 Complexity upper bound ? Time: 1.307 sec (SMT: 1.167 sec)