MAYBE Initial complexity problem: 1: T: (?, 1) f13(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w) -> f47(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w) [ a >= b ] (?, 1) f39(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w) -> f47(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w) [ c >= 3 ] (?, 1) f39(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w) -> f47(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w) [ 1 >= c ] (?, 1) f54(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w) -> f54(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w) (?, 1) f56(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w) -> f59(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w) (?, 1) f47(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w) -> f54(a, b, c, d, 0, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w) [ d >= 1 ] (?, 1) f47(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w) -> f54(a, b, c, d, 0, 0, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w) [ 0 >= d ] (?, 1) f39(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w) -> f47(a, b, 2, d, e + 1, f, h, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w) [ c = 2 ] (?, 1) f13(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w) -> f47(a, b, c, d, e, f, g, x, y, z, a1, e, x, x, x, p, q, r, s, t, u, v, w) [ x >= 1 /\ b >= a + 1 ] (?, 1) f13(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w) -> f39(a, b, b1, d, e, f, g, x, y, z, a1, e, x, x, x, x, r, 0, b1, b1, b1, 0, w) [ b >= a + 1 /\ 0 >= x /\ b1 >= 2 ] (?, 1) f13(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w) -> f39(a, b, b1, d, e, f, g, x, y, z, a1, e, x, x, x, x, r, 0, b1, b1, b1, 0, w) [ b >= a + 1 /\ 0 >= x /\ 0 >= b1 ] (?, 1) f13(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w) -> f13(a + 1, b, 1, d, e, f, g, x, y, z, a1, e, x, x, x, x, r, r, 1, 1, 1, 0, w) [ 0 >= x /\ b >= a + 1 ] (1, 1) f0(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w) -> f13(a, b, c, y, e, 0, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, 0) [ 0 >= y ] (1, 1) f0(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w) -> f13(a, b, c, y, e, 0, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, 0) [ y >= 1 ] start location: f0 leaf cost: 0 Slicing away variables that do not contribute to conditions from problem 1 leaves variables [a, b, c, d]. We thus obtain the following problem: 2: T: (1, 1) f0(a, b, c, d) -> f13(a, b, c, y) [ y >= 1 ] (1, 1) f0(a, b, c, d) -> f13(a, b, c, y) [ 0 >= y ] (?, 1) f13(a, b, c, d) -> f13(a + 1, b, 1, d) [ 0 >= x /\ b >= a + 1 ] (?, 1) f13(a, b, c, d) -> f39(a, b, b1, d) [ b >= a + 1 /\ 0 >= x /\ 0 >= b1 ] (?, 1) f13(a, b, c, d) -> f39(a, b, b1, d) [ b >= a + 1 /\ 0 >= x /\ b1 >= 2 ] (?, 1) f13(a, b, c, d) -> f47(a, b, c, d) [ x >= 1 /\ b >= a + 1 ] (?, 1) f39(a, b, c, d) -> f47(a, b, 2, d) [ c = 2 ] (?, 1) f47(a, b, c, d) -> f54(a, b, c, d) [ 0 >= d ] (?, 1) f47(a, b, c, d) -> f54(a, b, c, d) [ d >= 1 ] (?, 1) f56(a, b, c, d) -> f59(a, b, c, d) (?, 1) f54(a, b, c, d) -> f54(a, b, c, d) (?, 1) f39(a, b, c, d) -> f47(a, b, c, d) [ 1 >= c ] (?, 1) f39(a, b, c, d) -> f47(a, b, c, d) [ c >= 3 ] (?, 1) f13(a, b, c, d) -> f47(a, b, c, d) [ a >= b ] start location: f0 leaf cost: 0 Repeatedly removing leaves of the complexity graph in problem 2 produces the following problem: 3: T: (1, 1) f0(a, b, c, d) -> f13(a, b, c, y) [ y >= 1 ] (1, 1) f0(a, b, c, d) -> f13(a, b, c, y) [ 0 >= y ] (?, 1) f13(a, b, c, d) -> f13(a + 1, b, 1, d) [ 0 >= x /\ b >= a + 1 ] (?, 1) f13(a, b, c, d) -> f39(a, b, b1, d) [ b >= a + 1 /\ 0 >= x /\ 0 >= b1 ] (?, 1) f13(a, b, c, d) -> f39(a, b, b1, d) [ b >= a + 1 /\ 0 >= x /\ b1 >= 2 ] (?, 1) f13(a, b, c, d) -> f47(a, b, c, d) [ x >= 1 /\ b >= a + 1 ] (?, 1) f39(a, b, c, d) -> f47(a, b, 2, d) [ c = 2 ] (?, 1) f47(a, b, c, d) -> f54(a, b, c, d) [ 0 >= d ] (?, 1) f47(a, b, c, d) -> f54(a, b, c, d) [ d >= 1 ] (?, 1) f54(a, b, c, d) -> f54(a, b, c, d) (?, 1) f39(a, b, c, d) -> f47(a, b, c, d) [ 1 >= c ] (?, 1) f39(a, b, c, d) -> f47(a, b, c, d) [ c >= 3 ] (?, 1) f13(a, b, c, d) -> f47(a, b, c, d) [ a >= b ] start location: f0 leaf cost: 1 A polynomial rank function with Pol(f0) = 3 Pol(f13) = 3 Pol(f39) = 2 Pol(f47) = 1 Pol(f54) = 0 orients all transitions weakly and the transitions f47(a, b, c, d) -> f54(a, b, c, d) [ d >= 1 ] f47(a, b, c, d) -> f54(a, b, c, d) [ 0 >= d ] f39(a, b, c, d) -> f47(a, b, 2, d) [ c = 2 ] f39(a, b, c, d) -> f47(a, b, c, d) [ 1 >= c ] f39(a, b, c, d) -> f47(a, b, c, d) [ c >= 3 ] f13(a, b, c, d) -> f47(a, b, c, d) [ x >= 1 /\ b >= a + 1 ] f13(a, b, c, d) -> f47(a, b, c, d) [ a >= b ] f13(a, b, c, d) -> f39(a, b, b1, d) [ b >= a + 1 /\ 0 >= x /\ b1 >= 2 ] f13(a, b, c, d) -> f39(a, b, b1, d) [ b >= a + 1 /\ 0 >= x /\ 0 >= b1 ] strictly and produces the following problem: 4: T: (1, 1) f0(a, b, c, d) -> f13(a, b, c, y) [ y >= 1 ] (1, 1) f0(a, b, c, d) -> f13(a, b, c, y) [ 0 >= y ] (?, 1) f13(a, b, c, d) -> f13(a + 1, b, 1, d) [ 0 >= x /\ b >= a + 1 ] (3, 1) f13(a, b, c, d) -> f39(a, b, b1, d) [ b >= a + 1 /\ 0 >= x /\ 0 >= b1 ] (3, 1) f13(a, b, c, d) -> f39(a, b, b1, d) [ b >= a + 1 /\ 0 >= x /\ b1 >= 2 ] (3, 1) f13(a, b, c, d) -> f47(a, b, c, d) [ x >= 1 /\ b >= a + 1 ] (3, 1) f39(a, b, c, d) -> f47(a, b, 2, d) [ c = 2 ] (3, 1) f47(a, b, c, d) -> f54(a, b, c, d) [ 0 >= d ] (3, 1) f47(a, b, c, d) -> f54(a, b, c, d) [ d >= 1 ] (?, 1) f54(a, b, c, d) -> f54(a, b, c, d) (3, 1) f39(a, b, c, d) -> f47(a, b, c, d) [ 1 >= c ] (3, 1) f39(a, b, c, d) -> f47(a, b, c, d) [ c >= 3 ] (3, 1) f13(a, b, c, d) -> f47(a, b, c, d) [ a >= b ] start location: f0 leaf cost: 1 A polynomial rank function with Pol(f0) = -V_1 + V_2 Pol(f13) = -V_1 + V_2 Pol(f39) = -V_1 + V_2 Pol(f47) = -V_1 + V_2 Pol(f54) = -V_1 + V_2 orients all transitions weakly and the transition f13(a, b, c, d) -> f13(a + 1, b, 1, d) [ 0 >= x /\ b >= a + 1 ] strictly and produces the following problem: 5: T: (1, 1) f0(a, b, c, d) -> f13(a, b, c, y) [ y >= 1 ] (1, 1) f0(a, b, c, d) -> f13(a, b, c, y) [ 0 >= y ] (a + b, 1) f13(a, b, c, d) -> f13(a + 1, b, 1, d) [ 0 >= x /\ b >= a + 1 ] (3, 1) f13(a, b, c, d) -> f39(a, b, b1, d) [ b >= a + 1 /\ 0 >= x /\ 0 >= b1 ] (3, 1) f13(a, b, c, d) -> f39(a, b, b1, d) [ b >= a + 1 /\ 0 >= x /\ b1 >= 2 ] (3, 1) f13(a, b, c, d) -> f47(a, b, c, d) [ x >= 1 /\ b >= a + 1 ] (3, 1) f39(a, b, c, d) -> f47(a, b, 2, d) [ c = 2 ] (3, 1) f47(a, b, c, d) -> f54(a, b, c, d) [ 0 >= d ] (3, 1) f47(a, b, c, d) -> f54(a, b, c, d) [ d >= 1 ] (?, 1) f54(a, b, c, d) -> f54(a, b, c, d) (3, 1) f39(a, b, c, d) -> f47(a, b, c, d) [ 1 >= c ] (3, 1) f39(a, b, c, d) -> f47(a, b, c, d) [ c >= 3 ] (3, 1) f13(a, b, c, d) -> f47(a, b, c, d) [ a >= b ] start location: f0 leaf cost: 1 Applied AI with 'oct' on problem 5 to obtain the following invariants: For symbol f39: -X_1 + X_2 - 1 >= 0 This yielded the following problem: 6: T: (3, 1) f13(a, b, c, d) -> f47(a, b, c, d) [ a >= b ] (3, 1) f39(a, b, c, d) -> f47(a, b, c, d) [ -a + b - 1 >= 0 /\ c >= 3 ] (3, 1) f39(a, b, c, d) -> f47(a, b, c, d) [ -a + b - 1 >= 0 /\ 1 >= c ] (?, 1) f54(a, b, c, d) -> f54(a, b, c, d) (3, 1) f47(a, b, c, d) -> f54(a, b, c, d) [ d >= 1 ] (3, 1) f47(a, b, c, d) -> f54(a, b, c, d) [ 0 >= d ] (3, 1) f39(a, b, c, d) -> f47(a, b, 2, d) [ -a + b - 1 >= 0 /\ c = 2 ] (3, 1) f13(a, b, c, d) -> f47(a, b, c, d) [ x >= 1 /\ b >= a + 1 ] (3, 1) f13(a, b, c, d) -> f39(a, b, b1, d) [ b >= a + 1 /\ 0 >= x /\ b1 >= 2 ] (3, 1) f13(a, b, c, d) -> f39(a, b, b1, d) [ b >= a + 1 /\ 0 >= x /\ 0 >= b1 ] (a + b, 1) f13(a, b, c, d) -> f13(a + 1, b, 1, d) [ 0 >= x /\ b >= a + 1 ] (1, 1) f0(a, b, c, d) -> f13(a, b, c, y) [ 0 >= y ] (1, 1) f0(a, b, c, d) -> f13(a, b, c, y) [ y >= 1 ] start location: f0 leaf cost: 1 By chaining the transition f13(a, b, c, d) -> f47(a, b, c, d) [ a >= b ] with all transitions in problem 6, the following new transitions are obtained: f13(a, b, c, d) -> f54(a, b, c, d) [ a >= b /\ 0 >= d ] f13(a, b, c, d) -> f54(a, b, c, d) [ a >= b /\ d >= 1 ] We thus obtain the following problem: 7: T: (3, 2) f13(a, b, c, d) -> f54(a, b, c, d) [ a >= b /\ 0 >= d ] (3, 2) f13(a, b, c, d) -> f54(a, b, c, d) [ a >= b /\ d >= 1 ] (3, 1) f39(a, b, c, d) -> f47(a, b, c, d) [ -a + b - 1 >= 0 /\ c >= 3 ] (3, 1) f39(a, b, c, d) -> f47(a, b, c, d) [ -a + b - 1 >= 0 /\ 1 >= c ] (?, 1) f54(a, b, c, d) -> f54(a, b, c, d) (3, 1) f47(a, b, c, d) -> f54(a, b, c, d) [ d >= 1 ] (3, 1) f47(a, b, c, d) -> f54(a, b, c, d) [ 0 >= d ] (3, 1) f39(a, b, c, d) -> f47(a, b, 2, d) [ -a + b - 1 >= 0 /\ c = 2 ] (3, 1) f13(a, b, c, d) -> f47(a, b, c, d) [ x >= 1 /\ b >= a + 1 ] (3, 1) f13(a, b, c, d) -> f39(a, b, b1, d) [ b >= a + 1 /\ 0 >= x /\ b1 >= 2 ] (3, 1) f13(a, b, c, d) -> f39(a, b, b1, d) [ b >= a + 1 /\ 0 >= x /\ 0 >= b1 ] (a + b, 1) f13(a, b, c, d) -> f13(a + 1, b, 1, d) [ 0 >= x /\ b >= a + 1 ] (1, 1) f0(a, b, c, d) -> f13(a, b, c, y) [ 0 >= y ] (1, 1) f0(a, b, c, d) -> f13(a, b, c, y) [ y >= 1 ] start location: f0 leaf cost: 1 Complexity upper bound ? Time: 0.958 sec (SMT: 0.883 sec)