MAYBE Initial complexity problem: 1: T: (?, 1) f21(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q) -> f29(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q) [ 0 >= a ] (?, 1) f41(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q) -> f41(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q) (?, 1) f43(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q) -> f46(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q) (?, 1) f29(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q) -> f41(a, r, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q) [ a >= 1 ] (?, 1) f29(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q) -> f41(a, s, c, 0, r, r, r, h, i, j, k, l, m, n, o, p, q) [ 0 >= a /\ c + 999 >= r ] (?, 1) f29(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q) -> f41(1, s, c, 0, r, r, r, h, i, j, k, l, m, n, o, p, q) [ 0 >= a /\ r >= c + 1000 ] (?, 1) f21(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q) -> f29(0, b, r, d, e, f, g, 0, r, r, k, l, m, n, o, p, q) [ a >= 1 ] (1, 1) f0(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q) -> f21(1, b, c, d, e, f, g, h, i, j, k, r, k, n, o, p, q) [ 0 >= k ] (1, 1) f0(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q) -> f21(1, b, c, d, e, f, g, h, i, j, s, r, 0, 1, s, s, s) [ s >= 1 /\ k >= 1 ] (1, 1) f0(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q) -> f41(1, b, c, d, e, f, g, h, i, j, s, r, 0, 1, s, s, s) [ 0 >= s /\ k >= 1 ] start location: f0 leaf cost: 0 Slicing away variables that do not contribute to conditions from problem 1 leaves variables [a, c, k]. We thus obtain the following problem: 2: T: (1, 1) f0(a, c, k) -> f41(1, c, s) [ 0 >= s /\ k >= 1 ] (1, 1) f0(a, c, k) -> f21(1, c, s) [ s >= 1 /\ k >= 1 ] (1, 1) f0(a, c, k) -> f21(1, c, k) [ 0 >= k ] (?, 1) f21(a, c, k) -> f29(0, r, k) [ a >= 1 ] (?, 1) f29(a, c, k) -> f41(1, c, k) [ 0 >= a /\ r >= c + 1000 ] (?, 1) f29(a, c, k) -> f41(a, c, k) [ 0 >= a /\ c + 999 >= r ] (?, 1) f29(a, c, k) -> f41(a, c, k) [ a >= 1 ] (?, 1) f43(a, c, k) -> f46(a, c, k) (?, 1) f41(a, c, k) -> f41(a, c, k) (?, 1) f21(a, c, k) -> f29(a, c, k) [ 0 >= a ] start location: f0 leaf cost: 0 Repeatedly removing leaves of the complexity graph in problem 2 produces the following problem: 3: T: (1, 1) f0(a, c, k) -> f41(1, c, s) [ 0 >= s /\ k >= 1 ] (1, 1) f0(a, c, k) -> f21(1, c, s) [ s >= 1 /\ k >= 1 ] (1, 1) f0(a, c, k) -> f21(1, c, k) [ 0 >= k ] (?, 1) f21(a, c, k) -> f29(0, r, k) [ a >= 1 ] (?, 1) f29(a, c, k) -> f41(1, c, k) [ 0 >= a /\ r >= c + 1000 ] (?, 1) f29(a, c, k) -> f41(a, c, k) [ 0 >= a /\ c + 999 >= r ] (?, 1) f29(a, c, k) -> f41(a, c, k) [ a >= 1 ] (?, 1) f41(a, c, k) -> f41(a, c, k) (?, 1) f21(a, c, k) -> f29(a, c, k) [ 0 >= a ] start location: f0 leaf cost: 1 Testing for reachability in the complexity graph removes the following transitions from problem 3: f29(a, c, k) -> f41(a, c, k) [ a >= 1 ] f21(a, c, k) -> f29(a, c, k) [ 0 >= a ] We thus obtain the following problem: 4: T: (?, 1) f29(a, c, k) -> f41(a, c, k) [ 0 >= a /\ c + 999 >= r ] (?, 1) f29(a, c, k) -> f41(1, c, k) [ 0 >= a /\ r >= c + 1000 ] (?, 1) f21(a, c, k) -> f29(0, r, k) [ a >= 1 ] (?, 1) f41(a, c, k) -> f41(a, c, k) (1, 1) f0(a, c, k) -> f21(1, c, k) [ 0 >= k ] (1, 1) f0(a, c, k) -> f21(1, c, s) [ s >= 1 /\ k >= 1 ] (1, 1) f0(a, c, k) -> f41(1, c, s) [ 0 >= s /\ k >= 1 ] start location: f0 leaf cost: 1 Repeatedly propagating knowledge in problem 4 produces the following problem: 5: T: (2, 1) f29(a, c, k) -> f41(a, c, k) [ 0 >= a /\ c + 999 >= r ] (2, 1) f29(a, c, k) -> f41(1, c, k) [ 0 >= a /\ r >= c + 1000 ] (2, 1) f21(a, c, k) -> f29(0, r, k) [ a >= 1 ] (?, 1) f41(a, c, k) -> f41(a, c, k) (1, 1) f0(a, c, k) -> f21(1, c, k) [ 0 >= k ] (1, 1) f0(a, c, k) -> f21(1, c, s) [ s >= 1 /\ k >= 1 ] (1, 1) f0(a, c, k) -> f41(1, c, s) [ 0 >= s /\ k >= 1 ] start location: f0 leaf cost: 1 Applied AI with 'oct' on problem 5 to obtain the following invariants: For symbol f21: -X_1 + 1 >= 0 /\ X_1 - 1 >= 0 For symbol f29: -X_1 >= 0 /\ X_1 >= 0 For symbol f41: -X_1 + 1 >= 0 /\ X_1 >= 0 This yielded the following problem: 6: T: (1, 1) f0(a, c, k) -> f41(1, c, s) [ 0 >= s /\ k >= 1 ] (1, 1) f0(a, c, k) -> f21(1, c, s) [ s >= 1 /\ k >= 1 ] (1, 1) f0(a, c, k) -> f21(1, c, k) [ 0 >= k ] (?, 1) f41(a, c, k) -> f41(a, c, k) [ -a + 1 >= 0 /\ a >= 0 ] (2, 1) f21(a, c, k) -> f29(0, r, k) [ -a + 1 >= 0 /\ a - 1 >= 0 /\ a >= 1 ] (2, 1) f29(a, c, k) -> f41(1, c, k) [ -a >= 0 /\ a >= 0 /\ 0 >= a /\ r >= c + 1000 ] (2, 1) f29(a, c, k) -> f41(a, c, k) [ -a >= 0 /\ a >= 0 /\ 0 >= a /\ c + 999 >= r ] start location: f0 leaf cost: 1 By chaining the transition f0(a, c, k) -> f41(1, c, s) [ 0 >= s /\ k >= 1 ] with all transitions in problem 6, the following new transition is obtained: f0(a, c, k) -> f41(1, c, s) [ 0 >= s /\ k >= 1 /\ 0 >= 0 /\ 1 >= 0 ] We thus obtain the following problem: 7: T: (1, 2) f0(a, c, k) -> f41(1, c, s) [ 0 >= s /\ k >= 1 /\ 0 >= 0 /\ 1 >= 0 ] (1, 1) f0(a, c, k) -> f21(1, c, s) [ s >= 1 /\ k >= 1 ] (1, 1) f0(a, c, k) -> f21(1, c, k) [ 0 >= k ] (?, 1) f41(a, c, k) -> f41(a, c, k) [ -a + 1 >= 0 /\ a >= 0 ] (2, 1) f21(a, c, k) -> f29(0, r, k) [ -a + 1 >= 0 /\ a - 1 >= 0 /\ a >= 1 ] (2, 1) f29(a, c, k) -> f41(1, c, k) [ -a >= 0 /\ a >= 0 /\ 0 >= a /\ r >= c + 1000 ] (2, 1) f29(a, c, k) -> f41(a, c, k) [ -a >= 0 /\ a >= 0 /\ 0 >= a /\ c + 999 >= r ] start location: f0 leaf cost: 1 Complexity upper bound ? Time: 0.380 sec (SMT: 0.359 sec)